

Version 1.3

DESIGN GUDE

TECHNICAL SPECIFICATIONS

MASS TIMBER IS TRANSFORMING CONSTRUCTION

AND MERCER MASS TIMBER IS AT THE FOREFRONT

Mercer Mass Timber is leading the charge in innovation, paving the way for mass timber to become the foundation for future generations of high-performance, low-carbon buildings.

Mass timber construction is gaining momentum across North America, driven by growing demand and expanded building code acceptance. As access to high-quality mass timber increases, it is becoming a viable choice across diverse markets, building types, and regions.

Mass timber enables developers, designers, and builders to move beyond traditional trade-offs delivering buildings that balance efficiency and sophistication, speed and structural integrity, affordability and aesthetics. With its ability to sequester carbon over a building's lifespan, it also provides a sustainable alternative to steel and concrete.

As mass timber continues to prove its value in cost-effectiveness, performance, and renewability, it is becoming a preferred choice for owners, architects, engineers, and builders.

Mercer Mass Timber supports this transition by providing expertise, highquality materials, and industry-leading solutions to help clients realize the full potential of mass timber in their projects - whether prioritizing design, technical performance, functionality, or sustainability.

Table of Contents

BENEFITS OF

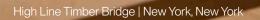
MASS TIMBER CONSTRUCTION7
Economically Competitive8
Code-Approved to North American Standards11
Product Quality Assured13
Adhesives
Biophilic Properties15
An Engineered Solution15
Environmentally Responsible16

THE MERCER MASS TIMBER ADVANTAGE 19

A Vertically Integrated Team 20)
Delivering New Levels of Value2	1
Service Options	7

CLT Product Applications
Mass Timber Building Code Considerations
Adhesives
Mercer CLT Product Characteristics40
Mercer CLT Panel Layups41
Mercer CLT Finishes and Appearance Classification42
Panel Applications
Structural Panel Properties and Allowable Design 44
Floor Span Tables, Western Species (SPF, DF-L)47
Floor Span Tables, Southern Species (SYP) 49
Roof Span Tables, Western Species (SPF, DF-L)51
Roof Span Tables, Southern Species (SYP) 53

MERCER GLULAM


BEAMS AND COLUMNS	57
Code-Approved to North American Standards	. 59
Adhesives	60
Mercer Glulam Product Characteristics	61
Glulam Appearance Classifications	62
Camber	66
Glulam Stress Grades	66

MERCER MASS TIMBER CARE, HANDLING, RIGGING AND INSTALLATION......77

MERCER MASS TIMBER

This publication, prepared by Mercer Mass Timber, is intended to serve as a technical guide only. The project designer and professional engineer of record are responsible for providing final documented design and engineering advice for any general or specific use or application where Mercer CLT and glulam beams and columns are being used. Mercer Mass Timber will not be held liable for any direct or indirect use or reliance on information published herein.

MERCER MASS TIMBER (MMT) IS A WHOLLY-OWNED SUBSIDIARY OF MERCER INTERNATIONAL.

.

3

1 + +

.

×.

**----

-0-

10

5

-

BC Passive House | Mount Currie, British Columbia

01

BENEFITS OF MASS TIMBER CONSTRUCTION

- 1. Economically Competitive
- 2. Code-Approved
- 3. Quality Assured
- 4. Adhesives
- 5. Biophilic Properties
- 6. An Engineered Solution
- 7. Environmentally Superior

1. Economically Competitive

Compared to traditional steel and concrete, mass timber construction shortens project schedules by transferring much of the on-site labor to the factory. Once on-site, it becomes more about assembly than construction.

Since a portion of the labor costs is included in the mass timber materials cost, it's crucial to compare the costs of the two systems at the 'installed-complete/structure' stage of the project. The cost benefits of mass timber construction can be summarized as follows:

REDUCED CONSTRUCTION CYCLE TIME

- As a fully integrated system supplier, Mercer Mass Timber delivers ready-toassemble mass timber building systems, complete with all connecting hardware and accessories.
- When specified by the contractor, Mercer components arrive on-site with all pick points clearly identified, supporting safe and efficient lifting.
- Compared to traditional practices, where steel bar reinforcing is manually tied on-site, forms and false work are constructed, and concrete is poured and left to set and strengthen, mass timber solutions can accelerate production schedules by as much

as 25% (see Figure 1).

- As part of The Mercer Mass Timber Advantage (see pages 19-23), further optimization of the construction schedule is achievable by coordinating the delivery and installation schedules.
- A compressed construction cycle not only accelerates completion but also minimizes the risk of delays inherent in extended cycles, potentially reducing the likelihood of claims and back charges.

For a comprehensive overview of our service options, refer to page 27.

COMPRESSING THE TYPICAL CONSTRUCTION SCHEDULE

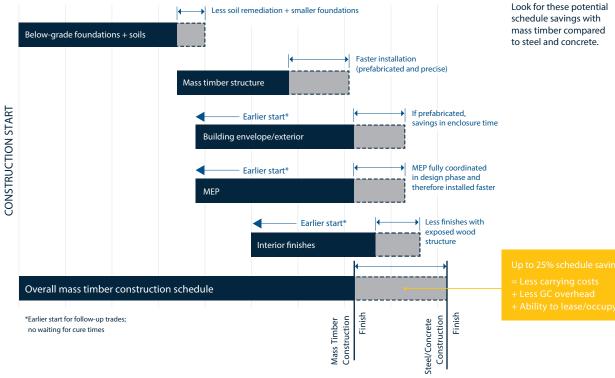


FIGURE 1: Mass timber vs. steel/ concrete construction schedule. Mass timber cost and design optimization checklists.

WoodWorks - Wood Products Council

DECREASED DEMAND FOR SKILLED LABOR

- The availability of skilled labor is one of the industry's biggest challenges today, with more skilled laborers retiring from construction trades than entering.
- Mass timber construction shifts

 a significant portion of the on-site
 skilled labor to permanent manufacturing
 positions, significantly reducing labor
 costs for projects.

IMPROVED JOBSITE SAFETY PERFORMANCE

Fewer jobsite laborers and a shorter cycle time contribute to enhanced jobsite safety performance, often leading to lower insurance rates and reduced costs associated with claims and recordable incident investigations.

REDUCED FOUNDATION COSTS

- Mass timber components are up to 75% lighter than traditional reinforced concrete components used in similar projects. This reduction in total building weight allows for smaller and lighter foundations, leading to the following benefits:
 - Cost savings from reduced materials and labor for footings and foundations.
 - A viable solution for development in areas with poor soil quality.
 - More cost-effective seismic solutions.

IMPROVED PROJECT ROI

• Accelerated build schedules materially reduce the cost of capital.

2. Code-Approved to North American Standards

The International Building Code (IBC) recognizes the following, provided they meet specific manufacturing standards, for use in mass timber construction building systems across various building typologies:

- Cross-laminated timber (CLT), when manufactured in accordance with the ANSI/APA PRG 320-2019 Standard for Performance Rated Cross-laminated Timber.
- Structural glue-laminated timber (GLT/glulam), when manufactured in accordance with the ANSI/APA A190.1-2017 Standard for Structural Glue-laminated Timber and Wood Construction Products.

These materials are approved for use in (see Figure 2):

- Multi-family residential buildings up to eighteen stories.
- Conventional non-residential buildings up to eighteen stories, including offices, banks, hotels, motels, dormitories, and other health facilities (excluding hospitals).
- Large non-residential buildings up to twelve stories, such as warehouses, stores, public and recreational facilities, schools, and government buildings.

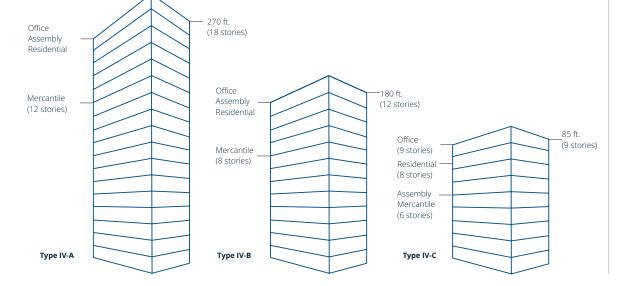


FIGURE 2: Height Limits for Building Types IV-A, IV-B, and IV-C in the 2021 International Building Code (IBC), Woodworks - Wood Products Council

DESIGN PROPERTY COMPATIBILITY

The design capacities published in ANSI/APA PRG 320-2019 and ANSI A190.1 were derived analytically using the lumber properties published in the National Design Specification (NDS) for Wood Construction. Lumber from outside of North America has different characteristics, may not be recognized in the NDS and has published design values that are incompatible with those of North American lumber. As a result, the design properties for mass timber products manufactured with foreign species lumber should be carefully examined for compatibility with the North American design standards.

MERCER MASS TIMBER PRODUCTS ARE CERTIFIED TO BE USED AS SLABS AND WALLS

The MMT evaluation report provides CLT reference design values for allowable stress design (ASD) for bending and in-plane shear in accordance with the IBC.

The CLT panels produced in our factories are produced for use as a diaphragm or shear walls, as per the IBC without the requirement of an Alternate Means and Methods Request (AMMR) within jurisdictions governed by the IBC, specifically. The in-plane shear design values include major and minor stress and strength capacities based on standard in-plane shear testing per Section 8.5.6.1 of ANSI/APA PRG 320 and Annex A3 of ASTM D5456.

3. Product Quality Assured

We are proud of our ongoing certification and adherence to the North American standards for crosslaminated timber and glue-laminated timber, as referenced throughout this guide. Mercer CLT and glulam are certified to meet the requirements of the Standard for Wood Products – structural glue-laminated timber and cross-laminated timber, as described in ANSI A190.1-2017 and ANSI/APA PRG 320-2019.

These standards outline the quality control measures required by ANSI, and compliance is verified by *APA – The Engineered Wood Association (www.apawood.org) through ongoing and monthly independent thirdparty inspection visits to Mercer's manufacturing operations. For more information on destructive performance testing, refer to Table 3 on page 39.

Further design considerations and local code approvals may be required when considering a foreign supply source, which can increase project timelines and cost. By adhering to these standards, MMT can assure a standard of quality to the professionals who specify our products.

4. Adhesives

MERCER MASS TIMBER ADHESIVE SYSTEMS

The manufacturing of all code-approved mass timber products requires adhesives approved for face bond lamination and end-to-end finger jointing. MMT uses adhesives specific to our manufacturing processes that are certified to North American testing and manufacturing standards.

All adhesives must conform to ASTM testing methods for fire, heat and moisture and must support ANSI manufacturing standards (see Table 1 below). These test methods and manufacturing standards are approved in the U.S. by the International Building Code (IBC). The IBC is a model building code developed by the International Code Council (ICC).

The adhesive component is product thickness and depth dependent and comprises approximately 1% by weight of Mercer's mass timber building products.

GLUE-BOND DURABILITY

The structural integrity of mass timber components depends upon the integrity of the glue-bond between the component lumber elements. This is true for the entire service life of these mass timber components. Conditions that can impact the glue-bond integrity are exposure to elevated heat (such as a fire event) and exposure to high moisture conditions for extended periods.

FIRE PERFORMANCE

The fire resistance of CLT and structural glulam is based on the certification requirements of the North American testing and manufacturing mass timber standards. These standards require rigorous adhesive heat durability testing to ensure mass timber product structural integrity under the most severe fire conditions.

EMISSIONS

Both Henkel and Hexion adhesives used by MMT for manufacturing our mass timber products are certified to UL GREENGUARD Gold. GREENGUARD Gold certified products are qualified to meet UL GREENGUARD standards for low chemical emissions into indoor air during product usage. These adhesives are formulated to meet or exceed all global emissions standards.

At the time of this publishing, this only refers to MMT Okanagan and MMT Conway factories. This is true for the entire service life of these mass timber components. Conditions that can impact the glue-bond integrity are exposure to elevated heat (such as a fire event) and exposure to high moisture conditions for extended periods.

			ENVICENCI	ADHESIV	/E PERFORMANCE TESTING	
ADHESIVE APPLICATION	ADHESIVE BRAND	ADHESIVE TYPE	EMISSIONS CERTIFICATION	FULL SCALE FIRE TEST	HEAT DELAMINATION	MOISTURE DURABILITY
Finger Joints CLT/ Glulam	Hexion Cascomel™	Melamine Formaldehyde (MF)	UL GREENGUARD Gold	\checkmark	\checkmark	~
Face Bond Glulam	Hexion EcoBind™	Melamine Formaldehyde (MF)	UL GREENGUARD Gold	\checkmark	\checkmark	~
Face Bond CLT	Henkel Loctite HB X PURBOND	Polyurethane (PUR)	UL GREENGUARD Gold	\checkmark	\checkmark	\checkmark

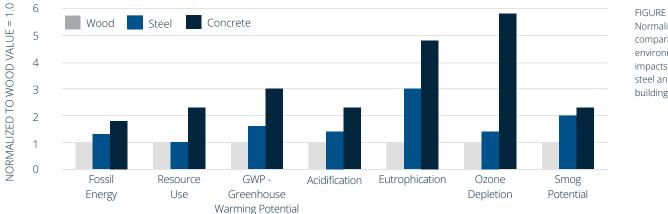
TABLE 1: Adhesives for CLT and glulam products

5. Biophilic Properties

As humans, we have an inherent desire to connect with nature and our environment. Increasingly, we're seeing projects that embrace this connection to the natural world, especially in corporate offices where creating an appealing workspace serves as both a benefit and a competitive advantage. Mass timber is the ideal structural material for this biophilic approach to design, delivering the warmth and beauty of wood while facilitating inviting designs featuring soaring ceilings, organic shapes, and open spaces. Whether the mass timber components are encapsulated or you choose to highlight the natural allure of the wood, you create environments that people are drawn to and want to return to time and again.

6. An Engineered Solution

CLT components, when manufactured in accordance with ANSI/APA PRG 320-2019 Standard for Performance Rated Cross-laminated timber and Glulam components complying with ANSI A190.1 Standard for Wood Products for Structural Glue-laminated timber, are recognized in the National Design Specification (NDS) as structurally rated components.


Design professionals employing mass timber construction can use the same engineering principles and standards with the same safety and code compliance recognition as are applied to materials such as steel and concrete. Mass timber embodies strength, resiliency and design ability expanse with the potential to reduce design time compared to other building material selections.

7. Environmentally Responsible

The United Nations states that two of the most compelling issues in the world today are shelter and climate change. Mass timber construction speaks to both.

- Wood as a building material is a renewable resource that can be regenerated through sustainable forestry practices. Mercer uses only wood that is sustainably harvested, including Forest Stewardship Council® (FSC®) (FSC-C005872), Sustainable Forestry Initiative® (SFI®), and the Programme for the Endorsement of Forest Certification (PEFC) chain-of-custody certified.
- Harvested timber retains its carbon through the life of the building, while reforestation through replanting increases the carbon capture rate by as much as a factor of two times over the same acreage.
- Located within the timberlands it draws upon, MMT minimizes the transportation footprint required to produce mass timber components. This is most compelling when compared to importing competitive mass timber products or steel from offshore producers.

- Less energy is consumed in the production of mass timber components. By some estimates, wood conversion is as much as five times more efficient than cement for concrete and up to 20 times more energy efficient than the production of steel (see Figure 3).
- As a choice, mass timber construction enables a virtuous cycle of capturing carbon from the atmosphere while supporting the forestry practices of responsible harvesting techniques and reforestation practices.
- Both CLT and glulam beams and columns are ASTM certified with Environmental Product Declarations (EPD) to provide complete transparency of the materials used. EPDs are imperative for calculating building lifecycle costs.

ENVIRONMENTAL IMPACT OF WOOD, STEEL AND CONCRETE

FIGURE 3: Normalized comparison of environmental impacts of wood, steel and concrete buildings

16

Three hypothetical buildings (wood, steel and concrete) of identical size and configuration are compared. In all cases, impacts are lower for the wood design. SOURCE: Dovetail Partners using the Athena Eco-Calculator

UW Foster School of Business, Founders Hall | Seattle, Washington

THE MERCER MASS TIMBER ADVANTAGE

- 1. A Vertically Integrated Team
- 2. Delivering New Levels of Value
- 3. Service Options

1. A Vertically Integrated Team

When you choose Mercer Mass Timber, you have the assurance you'll be working with:

THE NORTH AMERICAN INDUSTRY LEADER IN MASS TIMBER CONSTRUCTION. MMT proudly supports and is certified by all North American (US and Canada) building codes and manufacturing standards, boasting the largest production capacity in North America.

A DESIGN PARTNER. MMT employs a team of specialist engineers, BIM coordinators, fabrication designers, project managers, DfMA specialists, logistic experts, and mass timber installers at your disposal to execute a comprehensive value proposition. Our services can be precisely tailored to your needs, from early design and specification to the finest details of steel connections and hardware. We meticulously bring your vision to life, down to the last screw, nut, and bolt.

A PROJECT PARTNER. MMT is fully 4D BIM capable, planning the delivery of every component to optimize your construction schedule, including the loading sequence of each truck. We can collaborate with specialized logistics companies to utilize staging yards near your job site, ensuring materials are readily available for a reliable installation schedule.

A FULLY INTEGRATED SUPPLIER. MMT supplies CLT and glulam beams and columns from our factories, as well as source and install off-site proprietary products, project-custom steel connections, and all related hardware.

A STEWARD OF THE ENVIRONMENT. MMT uses sustainably harvested wood, including SFI®, FSC®, and PEFC chain-of-custody certified materials. Certificates are available upon request.

2. Delivering New Levels of Value

For decades, our experience as a world-renowned fabricator of complex mass timber components has endowed us with deep knowledge and expertise to create beautifully designed systems of the highest quality. Our work process is meticulously designed to ensure 100% accountability through every step of your project, including:

MASS TIMBER DESIGN-ASSIST

Our world-class team of specialists in design, supply and installation of mass timber structures have amassed the experience of every project we have supplied.

As a resource to your project design team, MMT can engage in design-assist services tailored for your project needs: engineering, BIM coordination, project management, fabricability and constructibility input. We will share our best practices and value propositions with you to deliver the most costeffective and creative solutions that meet or exceed the requirements of the US building codes, as well as your own high expectations.

BUDGETING

Our estimators and senior designers possess deep knowledge of mass timber design and engineering, including hardware and connections to provide you with accurate and timely SD-, DD- and CD-level budgets and quotations for your project.

PROJECT EXECUTION MANAGEMENT

A dedicated project execution team composed of project managers, BIM coordinators, mass timber engineers and detailers are allocated to your job for an efficient design, fabrication, delivery and installation. The project manager is the single point of contact and the utmost in customer service.

LUMBER PROCUREMENT

Through our strategic supply relationships, MMT has dedicated personnel to procure a wide range of commodity lumber and raw materials, as well as the related steel and system accessories, to protect against raw material price volatility. This mitigates the risk of price escalation for projects that have deferred production windows or prolonged production cycles.

SUSTAINABILITY

MMT is a fully sustainability-certified manufacturer of mass timber building products and is committed to achieving the highest standards of sustainable construction requirements. Our mass timber building products can be supplied with SFI®, FSC®, and PEFC certification.

FABRICATION APPROVAL AND 3D MODELING

Following the building design freeze, our fabrication approval team will create and coordinate an exact 3D model of your project including all mass timber components with all steel and hardware connectors, right down to every screw, nut, and bolt, including vital details such as holes, daps, slots, counterbores and chamfers, for fabrication. This process allows us to envision potential construction issues long before arriving on the jobsite.

This approach is streamlined for an efficient fabrication approval process, where the focus shifts from a design development perspective to a fabrication sign-off for production mindset, namely, finalizing exact component geometry, slab edges, member connections, panel connections and delivery sequence.

FABRICATION

From an approved-to-produce 3D model, the data is transferred electronically, directly to our state-of-the-art CNC fabrication machinery where components are produced to extreme precision (less than 1/8"). Individual component shop drawings are produced with exacting specifications as part of our quality control best practices.

QUALITY AND APPLICATION ASSURANCE

Throughout our process. MMT maintains a rigorous Quality and Application Assurance program that meets or exceeds the standards set forth in the North American model building codes. Third-party inspected and verified by APA and PFS-Teco.

MMT proudly delivers best-in-class product quality.

CODES AND STANDARDS COMPLIANT

Mercer CLT and glulam beams and columns comply with the International Building Code (IBC) and National Design Specification (NDS) for their respective materials, and are manufactured to ANSI/ APA PRG 320-2019 (CLT) and ANSI A190.1 (glulam) standards.

OPTIONS – ADHESIVES, FINISHES AND COATINGS

We offer a variety of options to enhance the aesthetic appeal of glulam beams and columns, including two adhesives, three smooth finishes, three rustic finishes and a wide array of factory-applied coatings.

PACKAGING AND DELIVERY

Secure arrival to the jobsite is the cornerstone of our delivery system. Depending on the job requirements, we factory install connectors and test-fit pieces to ensure smooth on-site assembly.

Glulam beams and columns are individually wrapped and sealed, corners are protected and additional packaging such as plywood sheathing is added when necessary. Please refer to page 70 for additional care and handling recommendations.

COORDINATED INSTALLATION

The MMT team can self-perform the installation of mass timber projects or, together with the project manager, coordinate with the project installation team to ensure safe and efficient on-site deliveries and installation. The result is a building with optimized structural performance, rapid assembly and superior aesthetic appeal.

Our team takes pride in every project, from preliminary consultation and design through manufacturing, shipment and installation. We navigate the complexities of design and construction with a steadfast commitment to seamless execution.

Superior Engineering for Superior Performance

Staggered Multiple Piece Lamination vs. Block Glued Layup Methodology

When manufacturing wide-section members, MMT utilizes a staggered multiple piece lamination technique as described in ANSI A190.1, section 9.3.

In contrast, the block glued methodology, commonly used by foreign manufacturers, allows for narrower single-lamination components to be edge-glued along the face of the two beams to produce built-up wide-section components. These edgelaminated blocks create a continuous, vertical shear plane between the two edge-glued narrow beams.

The multiple piece layup where edge laminations are both staggered and face glued is a preferred methodology because it creates more diffused shear planes, better dimensional stability and increased homogenization of the lamstock in the glulam structural member.

DIFFUSED SHEAR PLANES:

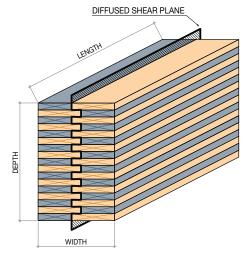
Foreign manufacturers commonly use a block glued methodology where narrower single-lam components are edge-glued to produce built-up wide components. This creates a continuous vertical shear plane between the two edge-glued components. In contrast, the multiple piece lamination technique creates noncontiguous vertical glue-line shear planes through the components.

DIMENSIONAL STABILITY:

Based upon the same principle of an increased number of elements within the component, a staggered multiple piece lamination layup reduces the dimensional tendencies of any one element and can potentially increase the overall stability of the component. This can be most prominently realized in wider and deeper sections.

INCREASED HOMOGENIZATION:

Glulam beams and columns constructed through the staggered multiple piece lamination technique are composed of more individual elements than through a single lamination layup practice. This increased number of elements acts to further diffuse the impact of any one element on the resulting component and creates a more homogeneous construction.


FIGURE 4: Staggered multi-piece lamination method

STAGGERED MULTIPLE PIECE LAMINATION

- The staggered multiple piece lamination method creates a noncontiguous shear plane in the glulam member.
- This staggered layup does not rely on the glue line integrity to the same degree as the forces can be resisted by the overlapping laminations in shear.
- This staggered glulam composition method is implicitly safer, more robust and does not demand the same degree of quality control over the glue line integrity as the block glued lamination method.

BLOCK GLUED GLULAM

- The block glued glulam lamination method creates a contiguous vertical shear plane that relies on the glue-bond line integrity to transfer loads through the glulam member.
- In an asymmetric loading application, the load component must transfer across the glue line in shear to allow the glulam member to act as a compound unit.

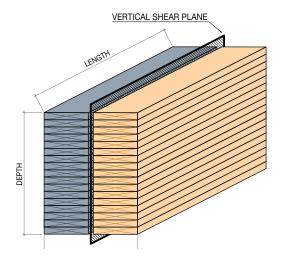


FIGURE 5: Block glued multi-piece lamination method

Mercer Spokane Factory | Spokane, Washington

OVER 60 YEARS OF NORTH AMERICAN COMBINED MASS TIMBER EXPERTISE

When you choose MMT, you'll be working with the North American industry leader in mass timber manufacturing and project delivery, a company at the forefront of the mass timber revolution. Compared with the costs and logistics of working with overseas manufacturers, Mercer is the right choice for simplified construction and sustainability.

We are also your partner in the process. We use 3D Building Information Modeling (BIM) to detail your vision down to the last screw, nut and bolt. Our sophisticated CNC machinery ensures extreme precision (less than 1/8") in all our fabrication. No other manufacturer in North America can match our quality and precision on CLT and glulam building products. We plan the delivery of every component to maximize your construction schedule, right down to how each member is loaded on every truck.

We work closely with you every step of the way. That's an advantage that overseas companies simply cannot achieve.

AS A MANUFACTURER, MERCER MASS TIMBER DELIVERS

Defect-free quality, the first time, every time. MMT utilizes state-of-the-art CNC robotics, along with a rigorous Quality and Application Assurance program throughout our process, from 3D modeling and inline lumber testing to test-fitting all component connections, ensuring what is delivered to the jobsite matches precisely with the 3D model created in our design center.

Our advanced scheduling system ensures your project is delivered complete, on schedule, and to spec. This will take place when milestone-based scheduling is adhered to, allowing for production to meet your expected deliveries.

3. Service Options

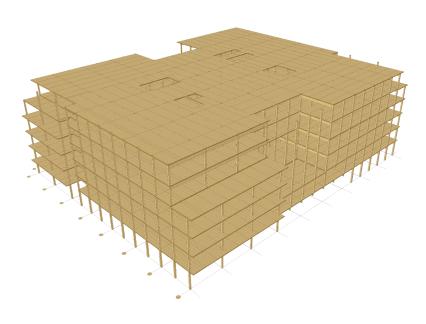
Our customers are at the heart of our business. MMT offers a range of design and fabrication service levels, each incorporating various elements of The Mercer Mass Timber Advantage. The service options range from fabrication only of your approved shop drawings, to traditional supply with our technical services, to consulting on cost efficiency through an engagement of design for manufacturing and assembly (DfMA). We will work with you to understand your needs, preferences and budget to select the right service level for your project.

OUR SERVICE OPTIONS INCLUDE:

FABRICATION	TRADITIONAL	DESIGN ASSIST	DELEGATED DESIGN
ONLY	SUPPLY	AND SUPPLY	AND SUPPLY
Supply of mass timber components per your approved single-piece shop drawings and fully detailed 3D model	Complete detailing and supply of mass timber kit-of-parts (including steel connectors and hardware) per MMT single-piece shop drawings, as approved by the project's Architect, Engineer and Contractor (AEC) team Project management and scheduling services, ensuring your mass timber kit-of-parts arrives on-site, on-time, in-full and on-spec to meet your construction schedule	Collaborate with the AEC team to achieve design cost optimization through efficiencies in manufacture and on-site assembly of the mass timber kit-of-parts Complete detailing and supply of mass timber kit-of-parts (including steel connectors and hardware) per Mercer single-piece shop drawings, as approved by the AEC team Project management and scheduling services, ensuring your mass timber kit-of-parts arrives on-site, on-time, in-full and on-spec to meet your construction schedule	Provide mass timber specialty engineering design services with consent and collaboration with the EOR and with respect to the architect's design intent Complete detailing and supply of mass timber kit-of-parts (including steel connectors and hardware) per MMT single-piece shop drawings, as approved by the AEC team Project management and scheduling services, ensuring your mass timber kit-of-parts arrives on-site, on-time, in-full and on-spec to meet your construction schedule

We believe Mercer Mass Timber is uniquely positioned to meet even the most challenging project requirements. We are confident that you will find our decades of North American experience and expertise worthy of further discussion.

MASS TIMBER DESIGN PROCESS



1. Mass Timber Design-Assist Process

Once you've determined mass timber construction is your preferred building approach and chosen Mercer Mass Timber as your supply partner, we recommend the following series of steps and decisions to help guide your progression forward.

We're ready to support your project.

Whether you engage us for design, supply, fabrication, or any stage in between, involving our mass timber specialists early ensures the best outcomes.

Determine standard grid pattern(s) for your design.

Select a mass timber building system for your project.

Consider each design aspect (fire performance, acoustics and sound transmission, vibration control, etc.) through the Design Considerations section in the guide (pages 33-75) and the effect each consideration may have on member sizing.

Using the engineering design properties provided in the guide for Mercer CLT (see pages 33-55) and glulam beams and columns (see pages 57-75), determine preliminary member sizing for individual grid assemblies for the load and applicable code requirements of your project

As you develop a working design solution, your MMT regional manager will work with you to complete your design, including validation of grid layout and member sizing and positioning, as well as to develop a preliminary budget for your project. To optimize your project, consult your MMT regional manager early in the design process.

MERCER CLT PRODUCTS

- 1. CLT Product Applications
- 2. Code Acceptance and Quality Assurance Standards
- 3. Adhesives
- 4. Mercer CLT Product Characteristics
- 5. Mercer CLT Panel Layups
- 6. Mercer CLT Finishes and Appearance Classification
- 7. Panel Applications
- 8. Structural Panel Properties and Allowable Design
- 9. Floor Span Tables, Western Species (SPF, DF-L)
- 10. Floor Span Tables, Southern Species (SYP)
- 11. Roof Span Tables, Western Species (SPF, DF-L)
- 12. Roof Span Tables, Southern Species (SYP)

Mercer Mass Timber Cross-laminated Timber (CLT)

As a North American manufacturer with deep roots in wood construction, we understand building codes and the construction process. Our history is also what makes us uniquely suited to deliver solutions that serve the construction industry.

CLT is a sustainable, carbon-negative alternative to concrete, ideal for floors, walls, roofs, cores, and shafts. Its two-way spanning capability enhances design flexibility, making it a game-changer in modern construction.

The technical information in this guide is compiled to support you in developing designs that specify Mercer CLT panels. If you have questions and need help, let our qualified team of mass timber specialists and technical support representatives help you specify the right solution for your project.

MERCER MASS TIMBER CLT ADVANTAGES:

- North American (US and Canada) code-approved
- Superior wood fiber and appearance
- Engineering, BIM coordination, fabrication approval services available
- CNC fabricated to exacting tolerances
- Delivered in coordinated sequence to installation schedule
- Steel and connecting hardware included
- All required holes, daps, slots, counterbores and chamfers included
- Rigorous quality control process

1. CLT Product Applications

FLOORS

Mercer CLT panels are ideally suited for modern floor systems because they are twoway span capable and ship to site as readyto-install components, greatly simplifying building construction and increasing jobsite productivity. Mercer CLT products help ensure an optimized structural solution that allows you to install up to 700-square-feet per lift, or over 15,000-square-feet per day.

ROOFS

Mercer CLT panels provide overhanging eaves and span a variety of roof layouts. Their inherent thermal insulation contributes to a more efficient envelope assembly. Panels can be as thin as 3.43" (87mm) and as thick as 12.42" (315mm), resulting in a maximum roof span of 40' with appropriate loading. CLT roofs are installed quickly, allowing projects to approach lockup and a watertight state in a short amount of time.

WALLS

Mercer CLT wall panels are a lighter, costcompetitive alternative to traditional load bearing wall systems like precast concrete and tilt-ups, but with much better thermal performance. When used as a system with wall and roof panels, there is an inherent gain in energy efficiency in the building design.

CLT walls can be used as non-load bearing

or load bearing. Additionally, the latest revision of ASCE (American Society of Civil Engineers) and SDPWS (Special Design Provisions for Wind & Sesimic) has formally recognized CLT walls as lateral load resisting systems.

As vertical and horizontal load-bearing elements, Mercer CLT panels extend the design envelope for industrial projects and allow the use of one structural system for an entire project.

SHEAR WALLS AND DIAPHRAGMS

Mercer CLT panels are certified to use as lateral force-resisting systems (LFRS) for both wind and seismic loads per ASCE7-22 and SDPWS-2021.

MMT pioneered the use of CLT as shear walls in the Catalyst project (Spokane, WA) and CLT diaphragms in the UW-FSB project (Seattle, WA). Our APA and PFS-Teco certifications provide in-plane shear capacities that can be used for LFRS design, in accordance to US design standards.

CORES AND SHAFTS

Mercer CLT panels are well suited for use in cores and shafts. These can be erected quicker and easier than comparable steel and concrete designs while still providing lateral bracing. Elevator and stair shafts can achieve two-hour fire resistance ratings.

2. Mass Timber Building Code Considerations

The International Building Code (IBC) recognizes cross-laminated timber (when manufactured per ANSI/APA PRG 320-2019 Standard [for Performance Rated Cross-laminated Timber]), and Glue-laminated Timber (when manufactured per ANSI/APA A190.1). MMT, as a manufacturer of these components certified in North America, adheres to these standards.

CONSTRUCTION TYPE (OCCUPATION CLASS*)	BUILDING HEIGHT*	ALLOWABLE FOR EXPOSED TIMBER**	FIRE RESISTANCE RATING (FLOORS AND MAIN FRAME**)		
II-A/B, I-A/B (B)	Roof only (max 2 story) or Fire-retardant-treated wood or Alternate Fire Testing per 2303.2, as well as non-bearing elements.				
III-B (B)	4 stories / 75'	100%	Oh		
III-A (B)	6 stories / 85'	100%	1h		
IV-HT (B)	6 stories / 85'	100%	HT		
IV-C (B)	9 stories / 85'	100%	2h		
IV-B (B)	12 stories / 180'	Partial (IBC 2024)	2h		
IV-A (B)	18 stories / 270'	0%	2h (3h primary frame)		
V-B (GENERAL)	1.2	100%	0h		
V-A (GENERAL)	1-3 stories / 40-60'	0% to 100%	0h to 1h		

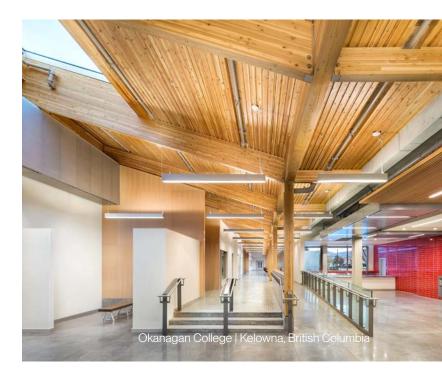
Manufacturers of mass timber cross-laminated timber components, certified in North America, adhere to the standards set forth as described above.

The values in this table are generalized. The validity of this information is the responsibility of the Architect and Engineer.

*Assumes Occupancy Classification (B) - Office Space U.N.O. For other occupancy classes, see IBC 2024. Building height corresponds to a sprinklered building.

**Fire ratings for interior Primary Structural Frame and floors. See IBC 2024 for other building elements and other special considerations related to the protection of wood.

For a full list of jurisdictions implementing IBC 2024 code provisions, visit WoodWorks (www. woodworks.org).


MERCER MASS TIMBER APA AND PFS-TECO REPORTS

Mercer Mass Timber APA PR-L314 (Mercer Okanagan), APA PR-L347 (Mercer Conway) and PFS-Teco BPER 0141 (Mercer Spokane) evaluation reports provide Mercer CLT reference design values for allowable stress design (ASD) for bending and in-plane shear in accordance with the IBC.

This additional recognition allows Mercer CLT to be considered for use as a diaphragm per IBC without the requirement of an Alternate Means and Methods Request (AMMR) within jurisdictions governed by the IBC, specifically. The in-plane shear design values include major and minor stress and strength capacities based on standard in-plane shear testing per Section 8.5.6.1. of ANSI/APA PRG 320 and Annex A3 of ASTM D5456. Using Mercer CLT for diaphragm use is advantageous since additional layers of plywood are not required to satisfy code requirements.

PRODUCT QUALITY ASSURED

We are proud of our ongoing certification and adherence to the North American cross-laminated timber and glue-laminated timber standards referenced throughout this guide. Mercer CLT is certified to meet the requirements of Standard for Wood Products – Structural Glue-laminated Timber and Cross-laminated Timber (GLT/ CLT) as described in ANSI A190.1-2017 and ANSI/APA PRG 320-2019.

These standards outline the quality control requirements required by ANSI and are verified by APA – The Engineered Wood Association (www.apawood.org) through ongoing and monthly independent third-party inspection visits to Mercer's manufacturing operations. For more information on destructive performance testing, see Table 3 on page 39.

Further design considerations and local code approvals may be required when considering a foreign supply source, which can increase project timelines and cost. By adhering to these standards, MMT can assure a standard of quality to the professionals who specify our products.

Environmental Product Declarations (EPDs) are available upon request.

3. Adhesives

MERCER MASS TIMBER ADHESIVE SYSTEMS

The manufacturing of all code-approved mass timber products to produce long length lamellas requires adhesives approved for face bond lamination and end-to-end finger jointing. MMT uses adhesives specific to our manufacturing processes that are certified to North American testing and manufacturing standards.

All adhesives must conform to ASTM testing methods for fire, heat and moisture and must support ANSI manufacturing standards (see Table 2 below). These test methods and manufacturing standards are approved in the US by the International Building Code (IBC). The IBC is a model building code developed by the International Code Council (ICC).

The adhesive component is product thickness and depth dependent and comprises approximately 0.5% by weight of Mercer's mass timber building products.

GLUE-BOND DURABILITY

The structural integrity of mass timber components depends upon the integrity of the glue-bond between the component lumber elements. This is true for the entire service life of these mass timber components. Conditions that can impact the glue-bond integrity are exposure to elevated heat (such as a fire event) and exposure to high moisture conditions for extended periods.

FIRE PERFORMANCE

The fire resistance of cross-laminated timber and structural glue-laminated timber is based on the certification requirements of the North American testing and manufacturing mass timber standards. MMT uses heat-resistant glues in its production of CLT, as required per PRG-320:2019 Annex B which requires rigorous adhesive heat durability testing to ensure mass timber product structural integrity under the most severe fire conditions.

MMT has successfully passed 2-hr Fire Resistance Rating (FRR) tests to ASTM E119 on 5-ply CLT panels produced in several facilities. We can provide test evidence to design teams and the authority having jurisdiction (AHJ) that Mercer CLT products perform better than the numerical model proposed in NDS Chapter 12. This allows the use of 5-ply CLT panels on 2-hr FRR scenarios, like in Building Types IV-A, IV-B and IV-C per the IBC.

EMISSIONS

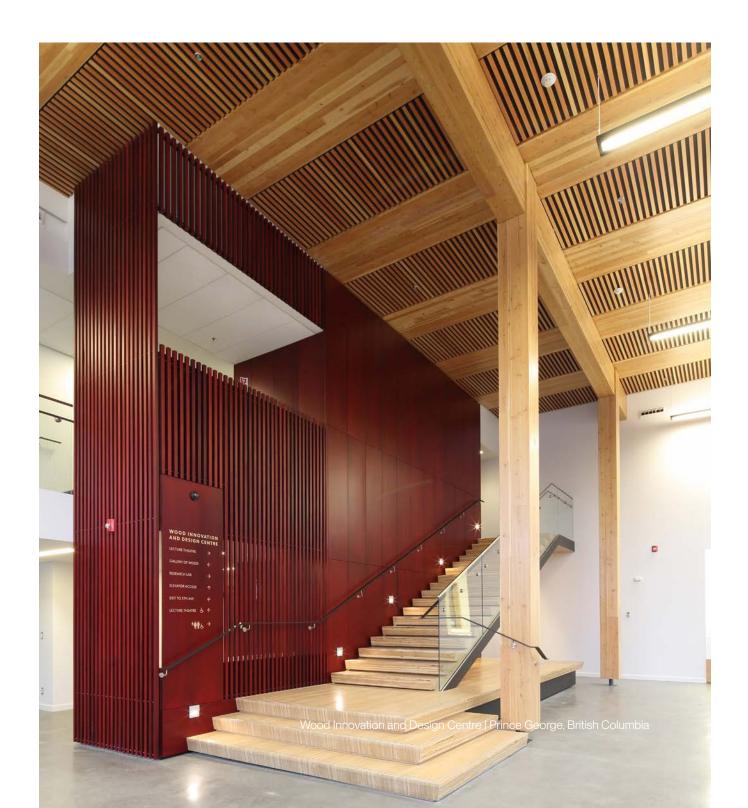
Both Henkel and Hexion adhesives used by MMT for manufacturing our mass timber products are certified to UL GREENGUARD Gold. GREENGUARD Gold certified products are qualified to meet UL GREENGUARD standards for low chemical emissions into indoor air during product usage. These adhesives are formulated to meet or exceed all global emissions standards.

			EMISSIONS	ADHESIVE PERFORMANCE TESTING					
ADHESIVE APPLICATION	ADHESIVE BRAND	ADHESIVE TYPE	CERTIFICATION	FULL SCALE FIRE TEST	HEAT DELAMINATION	MOISTURE DURABILITY			
FINGER JOINTS CLT	Hexion Cascomel™	Melamine Formaldehyde (MF)	UL GREENGUARD Gold	\checkmark	\checkmark	\checkmark			
FACE BOND CLT	Henkel Loctite HB X PURBOND	Polyurethane (PUR)	UL GREENGUARD Gold	\checkmark	\checkmark	\checkmark			

TABLE 2: Adhesives for CLT products

ТҮРЕ	PE METHODOLOGY				
SHEAR TESTING	Test blocks are sampled where the glue-bond lines are mechanically loaded to withstand failure	testing Note: As a standard			
CYCLIC - DELAMINATION TEST	Advanced wood aging process designed to simulate environmental trauma across 50 years of exterior service	procedure, each test result is documented and used to certify			
END JOINT TENSION TESTING	Destructive lot-testing of manufactured finger joints to ensure that final products meet the prescribed strength ratings	Mercer Mass Timber products prior to shipment.			

FIGURE 6: Glue-bond sample test blocks



4. Mercer CLT Product Characteristics

TABLE 4: Product characteristics

	MMT OKANAGAN	MMT CONWAY	MMT SPOKANE				
MAXIMUM PANEL SIZE	10' x 40' (3,048 mm x 12,192 mm)	12' x 60' (3,660 mm x 18,288 mm)	12' x 60' (3,660 mm x 18,288 mm)				
MAXIMUM THICKNESS		12.42" (315 mm)					
MINIMUM THICKNESS	3.43" (8	37 mm)	3.24" (82mm)				
PRODUCTION WIDTHS	8', 10' (2,438 mm to 3,048 mm)	7'-10½" to 11'-6" (2,400 mm to 3,505 mm)	9'-9" to 11'-9" (2,972 mm to 3,581 mm)				
MOISTURE CONTENT	129	6 (+/-3%) at time of manufac	cturing				
FACE BOND GLUE TYPE		Henkel Loctite HB X PURBO	ND				
FINGER JOINT GLUE TYPE	Hexion Cascomel® Henkel Loctite HB X PURBOND						
SPECIES	SPF, DF-L, SYP	SYP	SPF, DF-L, SYP				
LUMBER GRADES	SPF #2, SPF MSR 2100, SPF #3, DF-L #2, SYP #2, SYP #3	SYP #2, SYP MSR 2100	SPF #2, SPF #3, SPF MSR 2100, DF-L #2, DF-L #3, DF-L MSR 2100, SYP #2, SYP MSR 2100				
STRESS GRADES	V2M1.1, V2.1, E1M4, E1M5	V3M1, V3.1, E4M2, E4M3	1.4V, 1.8M				
MANUFACTURING CERTIFICATION	APA-PR L314	APA-PR L347	PFS-TECO BPER 0141				
DENSITY	SF	PF: 30pcf DF-L: 35pcf SYP: 4	40pcf				
MOISTURE DIMENSIONAL STABILITY		and Transverse 0.01% per 9 kness 0.20% per % change					
THERMAL CONDUCTIVITY	R	value: 1.2 per inch (h·ft².°F	/Btu)				
CO ₂ SEQUESTRATION	37.4 lbs/ft ³ (subject to local manufacturing and distances)	IN P	ROGRESS				
	DIMENSIONAL	TOLERANCES					
THICKNESS	+⁄- 1/16" (2 mm) or 2% of CLT thickness, wh	nichever is greater				
WIDTH	-	⊧⁄- 1/8" (3 mm) of the CLT wi	dth				
LENGTH	+/- 1/4" (6 mm) of the CLT length						
SQUARENESS	Panel face diago	onals shall not differ by mor	e than 1/8" (3 mm)				
STRAIGHTNESS		es from a straight line betw hers shall not exceed 1/16"					
MACHINED SURFACES	+/- 1/8" (3 mn	n) with all tooling units exce which is +⁄- 1/4" (6 mm)	pt the chainsaw,				

5. Mercer CLT Panel Layups

6. Mercer CLT Finishes and Appearance Classification

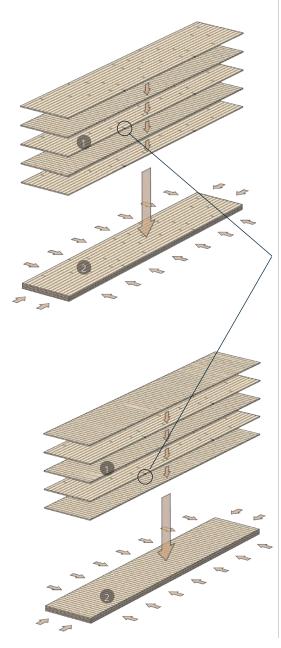
	VISUAL	NON-VISUAL
INTENDED USE	Where one or both faces are left exposed	Where both faces are covered by another material
	SPF #2&Btr Appearance Grade, Douglas-fir,	
FACE LAYER - V SERIES	Appearance Grade,	SPF #2&Btr, SP #2&Btr
	SP #2&Btr Appearance Grade	
FACE LAYER - E SERIES	SPF MSR 2100 Square Edge	SPF MSR 2100, SP MSR 2100
	80 grit	
SANDED FACE	Note: Final finishing prep work must be completed on-site, including cleaning and touch-up of panels	N/A

	ALLOWABLE FIBER CHARACTERISTICS							
SHAKE AND CHECKS	Several up to 24" long, none through	As per NLGA #2, SPF #2&Btr						
CTAIN	Up to a max of 5% blue stain, heart stain allowed	Allowed pot limited						
STAIN	Note: E Series panels have no blue stain restrictions	Allowed, not limited						
KNOTS	Firm & Tight (NLGA #2)	NLGA #2						
PITCH STREAKS	Not limited	Not limited						
WANE ON FACE	None	Allowed						
SIDE PRESSURE Yes		None						

SYP NON-VISUAL - EXAMPLE 1

SURFACE QUALITY

7. Panel Applications


Mercer CLT panels are primarily intended for one-way slab, single or multi-span behavior in the panel strong direction for out-of-plane loads and acts as the floor/ roof diaphragm without the addition of plywood sheathing or structural concrete topping for in-plane loading. The bottom face of appropriatelysized floor panels may be visually exposed and achieve a 1- or 2-hour fire resistance rating through charring of the wood.

The width of laminations (boards) in outer visible layers and inner layers of panels are nominally 6 inches. Architectural and Industrial Appearance surface classifications are available, where an Architectural Appearance surface classification may be specified on one, both, or neither of the faces of the panel. Our CLT is compatible with a number of different surface treatments (i.e., painted, stained, sealed, etc.), which should be evaluated on a project-by-project basis.

Boards are end jointed (finger-jointed) at random lengths to create continuous boards from which the billet is laid up. End joints are cut parallel to the wide face of laminations, thus the fingers will be visible on the narrow face of boards. Transverse boards may not contain finger joints.

Finished panels are accurately fabricated from full billets to the userspecified size, shape, and level of detail by state-of-the-art CNC machines installed at production at each facility to provide precise field fit. Consult with MMT on a project basis to review the manufacturability of the proposed CLT panelization, holes, and edge cut fabrication at early design stages.

LAYUP OF A 5-PLY MERCER CLT BILLET

MAJOR STRENGTH DIRECTION

Transverse laminations

END JOINTS IN LONGITUDINAL LAMINATIONS

- 1. Face bond adhesive between each layer
- Top, end, and side pressure applied during curing

MINOR STRENGTH DIRECTION

Longitudinal laminations

8. Structural Panel Properties and Allowable Design

TABLE 6: Allowable design properties for laminations - Western Species (SPF, DF-L)*

CLT		MAJOF	STRENG	GTH DIRE	CTION	MINOF	MINOR STRENGTH DIRECTION					
GRADE	F _B	E	F _T	F _c	Fv	Fs	F _B	E	F _T	F _c	Fv	Fs
	(psi)	(10º psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(10 ⁶ psi)	(psi)	(psi)	(psi)	(psi)
V2.1 1.4V 875 SPF 1.4V 875 DF-L	875	1.4	450	1,150	135	45	500	1.2	250	650	135	45
V2M1.1	875	1.4	450	1,150	135	45	875	1.4	450	1,150	135	45
E1M4 1.8M 2100 SPF 1.8M 2100 DF-L	2,100	1.8	1,575	1,875	160	50	500	1.2	250	650	135	45
1.01vi 2100 DI -L												
E1M5	2,100	1.8	1,575	1,875	160	50	875	1.4	450	1,150	135	45

NOTES:

1. Tabulated values are allowable design values and not permitted to be increased for the lumber size adjustment factor in accordance with the NDS.

2. The CLT grades are developed based on APA and PFS-Teco Certifications. Please refer to specific grade layups for complete panel information.

3. The design values shall be used in conjunction with the section properties provided by the CLT manufacturer based on the actual layup used in manufacturing the CLT panel (see table above).

TABLE 7: Allowable design properties for laminations	- Southern Species (SYP)*
--	---------------------------

		MAJOR	STRENG	GTH DIRE	MINOR STRENGTH DIRECTION							
CLT GRADE	F _B (psi)	E (10º psi)	F _T (psi)	F _C (psi)	F _V (psi)	F _s (psi)	F _B (psi)	E (10⁵psi)	F _T (psi)	F _C (psi)	F _V (psi)	F _S (psi)
V3.1	750	1.4	450	1,250	175	55	450	1.3	250	725	175	55
V3M1 1.4V 750 SYP	750	1.4	450	1,250	175	55	750	1.4	450	1,250	175	55
E4M3	2,100	1.8	1,575	1,875	175	55	450	1.3	250	725	175	55
E4M2 1.8M 2100 SYP	2,100	1.8	1,575	1,875	175	55	750	1.4	450	1,250	175	55

NOTES:

1. Tabulated values are allowable design values and not permitted to be increased for the lumber size adjustment factor in accordance with the NDS.

2. The CLT grades are developed based on APA Product Report PR-L314, APA Product Report PR-L347 and PFS-Teco Building Product Evaluation Report BPER-0141. Please refer to specific grade layups for complete panel information.

3. The design values shall be used in conjunction with the section properties provided by Mercer Mass Timber based on the actual layup used.

4. Values are calculated per one-foot-wide section of panel.

*This list is non exhaustive. Contact Mercer Mass Timber for additional grades.

			MAJC	OR STRENG	TH DIREC	TION	MINC	OR STRENG	TH DIREC	TION
CLT GRADE	E PANEL WEIGHT LBS/FT ²		F _B S _{EFF,0} (Ibs-ft/ft)	El _{EFF,0} (10 ⁶ lbs-in²/ft)	GA _{EFF,0} (10⁰lbs/ft)	V _{S,0} (lbf/ft)	F _B S _{EFF,0} (lbs-ft/ft)	EI _{EFF,90} (10 ⁶ lbs-in²/ft)	GA _{EFF,90} (10 ⁶ lbs/ft)	V _{S,90} (Ibf/ft)
	87 V	8.5	1,440	56	0.48	1,230	35	0.36	0.30	240
	90 V	8.8	1,500	60	0.39	1,270	115	2.0	0.44	425
V2.1 1.4V 875	150 V	14.8	3,450	229	0.78	2,120	1,010	51	0.89	1,270
SPF 1.4V 875 DF-L	139V	13.7	3,325	206	0.96	1,970	540	21	0.60	980
0,0012	191V	18.8	5,925	503	1.40	2,700	1,220	83	0.91	1,710
	243V	23.9	9,200	995	1.90	3,450	2,140	209	1.20	2,450
	105 V	10.3	2,050	96	0.53	1,490	280	3.7	0.53	495
	175 V	17.2	4,725	366	1.10	2,480	2,410	96	1.10	1,490
V2M1.1	245 V	24.1	8,350	906	1.60	3,475	5,550	366	1.60	2,480
	315 V	30.9	12,925	1,806	2.10	4,475	9,800	906	2.10	3,475
E1M4	87 E	8.5	3,475	72	0.50	1,230	35	0.40	0.38	270
1.8M 2100	139 E	13.7	7,975	264	0.99	1,970	540	21	0.77	1,090
SPF 1.8M 2100	191 E	18.8	14,175	645	1.50	2,700	1,230	83	1.10	1,910
DF-L	243 E	23.9	22,075	1,278	2.00	3,450	2,160	209	1.50	2,725
	105 E	10.3	4,900	123	0.54	1,490	275	3.70	0.66	550
E114E	175 E	17.2	11,250	469	1.10	2,480	2,400	96	1.30	1,650
E1M5	245 E	24.1	19,900	1,161	1.60	3,475	5,550	366	2.00	2,750
	315 E	30.9	30,850	2,314	2.10	4,475	9,825	906	2.60	3,850

TABLE 8: Allowable stress design capacities for Western Species (SPF, DF-L)*

CLT		WEIGHT		MAJOR STI	RENGTH D	IRECTION		MINOR STRENGTH DIRECTION		
GRADE	PANEL	lb/ft ²	F _B S _{EFF,0} (lbf-ft/ft)	El _{EFF,0} (10º lbf-in²/ft)	GA _{EFF,0} (10 ⁶ lbf/ft)	F _B S _{EFF,90} (lbf-ft/ft)	V _{S,0} (lbf/ft)	El _{EFF,90} (10 ⁶ lbf-in²/ft)	GA _{EFF,90} (10 ⁶ lbf-in²/ft)	V _{S,90} (lbf/ft)
	87 V SP	11.4	1,240	56	0.51	35	1,510	0.39	0.30	295
104	139 V SP	18.2	2,850	206	1.00	485	2,410	23	0.61	1,200
V3.1	191 V SP	25	5,075	503	1.50	1,100	3,300	91	0.91	2,100
	243 V SP	31.9	7,900	996	2.10	1,920	4,200	227	1.20	3,000
	105 V SP	13.8	1,750	95	0.53	235	1,820	37	0.53	605
V3M1	150 V SP	19.7	2,950	230	0.90	1,510	2,600	60	0.90	1,560
1.4V 750	175 V SP	22.9	4,025	366	1.10	2,060	3,025	95	1.10	1,820
SYP	245 V SP	32.1	7,125	906	1.60	4,750	4,250	366	1.60	3,025
	315 V SP	41.3	11,050	1,806	2.10	8,375	5,450	906	2.10	4,250
	87 E SP	11.4	3,475	72	0.53	35	1,510	0.39	0.38	295
E 41 42	139 E SP	18.2	7,975	264	1.10	485	2,410	23	0.77	1,200
E4M3	191 E SP	25	14,200	646	1.60	1,100	3,300	91	1.20	2,100
	243 E SP	31.9	22,075	1,278	2.10	1,940	4,200	229	1.50	3,000
	105 E SP	13.8	4,900	123	0.50	140	1,820	3.4	0.65	605
E4M2	175 E SP	22.9	11,250	469	1.10	1,240	3,025	89	1.30	1,820
1.8M 2100 SYP	245 E SP	32.1.3	19,875	1,160	1.50	2,850	4,250	341	2.00	3,025
	315 E SP	41.3	30,800	2,312	2.00	5,050	5,450	845	2.60	4,250

TABLE 9: Allowable stress design capacities **Southern Species (SYP)***

*Not all layups shown. Some layups might be specific to a factory. Contact Mercer Mass Timber for more details.

9. Floor Span Tables, Western Species (SPF, DF-L)

TABLE 10: Single span CLT floor slabs, SDL=40 psf. Includes panel self-weight and live load as below. Maximum span in [ft].

CLT		NTIAL SPA OAD=40 PS			OFFICE SPACE LIVE LOAD=50 PSF			MECHANICAL ROOM			STORAGE AREA		
PANEL		UAD-40 F.	51		0AD-30 F.	51			5F		JAD-100 P	36	
	VIBRATION	L/240	ASD	VIBRATION	L/240	ASD	VIBRATION	L/240	ASD	VIBRATION	L/240	ASD	
87 V	8.56	9.33	11.36	8.53	9.10	10.77	8.47	8.60	9.63	8.40	8.19	8.78	
87 E	9.22	10.15	17.69	9.19	9.90	16.77	9.12	9.36	14.99	9.05	8.91	13.67	
90 V	8.73	9.44	11.57	8.70	9.20	10.97	8.63	8.70	9.81	8.57	8.28	8.95	
105 V	9.98	10.95	13.40	9.95	10.69	12.72	9.87	10.11	11.40	9.80	9.63	10.41	
105 E	10.75	11.90	20.85	10.71	11.61	19.79	10.63	10.97	17.71	10.56	10.45	16.17	
139 V	12.39	14.12	16.74	12.35	13.80	15.92	12.27	13.11	14.31	12.18	12.53	13.10	
139 E	13.35	15.38	26.05	13.31	15.03	24.77	13.21	14.26	22.24	13.12	13.63	20.35	
150 V	12.75	14.43	16.95	12.71	14.11	16.13	12.62	13.40	14.51	12.54	12.80	13.30	
175 V	14.57	16.69	19.52	14.53	16.33	18.60	14.43	15.53	16.77	14.34	14.86	15.39	
175 E	15.70	18.18	30.40	15.66	17.78	28.95	15.55	16.89	26.08	15.45	16.15	23.92	
191 V	15.92	18.58	21.72	15.88	18.19	20.71	15.78	17.33	18.70	15.68	16.61	17.19	
191 E	17.16	20.28	33.79	17.12	19.85	32.21	17.00	18.90	29.06	16.90	18.11	26.68	
243 V	19.26	22.83	26.35	19.21	22.38	25.19	19.09	21.39	22.85	18.98	20.54	21.06	
243 E	20.78	24.95	41.11	20.72	24.45	39.27	20.60	23.35	35.58	20.47	22.41	32.77	
245 V	18.74	21.94	25.04	18.70	21.51	23.94	18.58	20.54	21.72	18.48	19.71	20.02	
245 E	20.19	24.01	38.99	20.14	23.52	37.26	20.02	22.45	33.76	19.90	21.54	31.09	
315 V	22.67	26.83	30.13	22.61	26.33	28.88	22.49	25.23	26.34	22.37	24.28	24.37	
315 E	24.36	29.19	46.59	24.30	28.65	44.67	24.17	27.46	40.74	24.04	26.43	37.69	

NOTES:

1. See Table 11 for notes.

TABLE 11: Double span CLT floor slabs, SDL=40 psf. includes	panel self-weight and live load as below. Maximum span in [ft].
---	---

							MECHANICAL ROOM					
	RESIDE	NTIAL SPA	CE	OFF	ICE SPACE		MECHA	NICAL RO	MC	STOP	RAGE AREA	L.
CLT PANEL	LIVE LO	DAD=40 PS	SF	LIVE L	OAD=50 P	SF	LIVE L	OAD=75 P	SF	LIVE LO	DAD=100 P	SF
PAINEL	VIBRATION	L/240	ASD	VIBRATION	L/240	ASD	VIBRATION	L/240	ASD	VIBRATION	L/240	ASD
87 V	10.27	12.69	11.36	10.24	12.39	10.77	10.16	11.74	9.63	10.08	11.20	8.78
87 E	11.07	13.82	17.69	11.03	13.49	16.77	10.95	12.78	14.99	10.87	12.19	13.23
90 V	10.47	12.90	11.57	10.44	12.59	10.97	10.36	11.92	9.81	10.28	11.37	8.95
105 V	11.98	14.97	13.40	11.94	14.62	12.72	11.85	13.86	11.40	11.77	13.23	10.41
105 E	12.90	16.29	20.85	12.86	15.90	19.79	12.76	15.07	17.71	12.67	14.38	15.83
139 V	14.87	19.16	16.74	14.82	18.74	15.92	14.72	17.82	14.31	14.62	17.06	13.10
139 E	16.02	20.88	26.05	15.97	20.42	24.77	15.86	19.41	22.24	15.75	18.57	20.35
150 V	15.30	19.66	16.95	15.26	19.23	16.13	15.15	18.29	14.51	15.05	17.51	13.30
175 V	17.48	22.74	19.52	17.43	22.26	18.60	17.31	21.21	16.77	17.20	20.32	15.39
175 E	18.85	24.79	30.40	18.79	24.26	28.95	18.66	23.10	26.08	18.54	22.12	23.92
191 V	19.11	25.20	21.72	19.06	24.68	20.71	18.93	23.55	18.70	18.81	22.59	17.19
191 E	20.60	27.51	33.79	20.54	26.94	32.21	20.40	25.69	29.06	20.28	24.63	26.68
243 V	23.11	30.96	26.35	23.05	30.36	25.19	22.91	29.05	22.85	22.78	27.93	21.06
243 E	24.93	33.84	41.11	24.87	33.18	39.27	24.71	31.72	35.58	24.57	30.48	32.77
245 V	22.49	29.87	25.04	22.43	29.29	23.94	22.30	28.01	21.72	22.17	26.93	20.02
245 E	24.23	32.65	38.99	24.17	32.01	37.26	24.02	30.59	33.76	23.88	29.39	31.09
315 V	27.20	36.54	30.13	27.14	35.88	28.88	26.99	34.43	26.34	26.85	33.17	24.37
315 E	29.23	39.71	46.59	29.16	30.00	44.67	29.00	37.42	40.74	28.85	36.06	37.69

NOTES:

1. For panel properties refer to Table 8. Span Tables are intended for Preliminary Sizing only.

2. Span Table includes self-weight plus a superimposed dead load of SDL=40psf. This SDL covers a typical 2" thick concrete topping + 15psf for miscellaneous imposed dead loads.

3. For double span situations, both spans are assumed to be equal. Live load pattern loading has not been considered. Live loads are assumed to be uniform over both spans.

4. Deflection checks were made assuming a maximum allowable deformation of L/240 (L = span) under total load, including creep behavior as defined on NDS clause 3.5.2 with Kcr=2.0

5. Vibration design is based on the approach outlined in the CLT Handbook as described on the latest US Mass Timber Floor Vibration Design Guide. Vibration span values are increased by 20% for double span situations based on the US CLT Handbook and the Mass Timber Floor Vibration Guide. The effect of flexible supports (e.g. glulam beams) is not considered on the vibration results presented. More sophisticated vibration analysis might be required.

6. ASD spans shown are established not to exceed the maximum Moment and Shear capacities of the panels, as per ASD design methodology defined on the NDS. All adjustment factors outlined in NDS Table 10.3.1 have assumed as 1.0

7. Span table values are only valid in the major strength direction of the CLT panels.

8. Some of the indicated spans exceed manufacturing capacities (60' single span panel, 2x30' for double span.) In some manufacturing plants or conditions, the maximum limit might be reduced. Contact Mercer Mass Timber for more details.

10. Floor Span Tables, Southern Species (SYP)

TABLE 12: Single span CLT floor slabs, SDL=40 psf. Includes panel self-weight and live load as below. Maximum span in [ft].

CI T	RESIDE	NTIAL SPA	CE	OFFICE SPACE			MECHANICAL ROOM			STORAGE AREA		
CLT PANEL	LIVE LO	DAD=40 PS	SF	LIVE LO	DAD=50 PS	SF	LIVE L	OAD=75 PS	SF	LIVE LC	DAD=100 P	SF
TANLE	VIBRATION	L/240	ASD	VIBRATION	L/240	ASD	VIBRATION	L/240	ASD	VIBRATION	L/240	ASD
87 V SP	8.54	9.29	10.48	8.51	9.07	9.94	8.45	8.58	8.89	8.39	8.18	8.12
87 E SP	9.19	10.09	17.54	9.16	9.84	16.64	9.09	9.32	14.89	9.03	8.88	13.60
105 V SP	9.96	10.95	12.34	9.92	10.69	11.72	9.85	10.13	10.51	9.78	9.66	9.61
105 E SP	10.71	11.86	20.59	10.67	11.58	19.56	10.59	10.97	17.53	10.52	10.46	16.03
139 V SP	12.35	14.02	15.36	12.31	13.71	14.62	12.23	13.04	13.16	12.15	12.48	12.07
139 E SP	13.28	15.24	25.70	13.24	14.90	24.46	13.15	14.17	22.02	13.06	13.56	20.18
175 V SP	14.51	16.64	17.93	14.47	16.28	17.10	14.38	15.52	15.45	14.29	14.86	14.19
175 E SP	15.59	18.00	29.88	15.55	17.62	28.50	15.45	16.79	25.74	15.35	16.08	23.66
191 V SP	15.86	18.43	19.87	15.82	18.05	18.97	15.72	17.23	17.16	15.62	16.52	15.79
191 E SP	17.06	20.02	33.24	17.02	19.61	31.73	16.91	18.71	28.71	16.81	17.95	26.42
243 V SP	19.17	22.62	24.08	19.12	22.19	23.05	19.01	21.24	20.95	18.90	20.43	19.34
243 E SP	20.62	24.53	40.25	20.57	24.07	38.52	20.45	23.03	35.02	20.34	22.14	32.33
245 V SP	18.66	21.79	22.89	18.62	21.37	21.91	18.51	20.45	19.92	18.41	19.65	18.39
245 E SP	20.04	23.57	38.18	19.99	23.12	36.55	19.88	22.11	33.23	19.77	21.25	30.67
315 V SP	22.52	26.56	27.42	22.47	16.09	26.32	22.35	25.05	24.07	22.24	24.14	22.31
315 E SP	24.22	28.78	45.83	24.17	28.27	44.00	24.04	27.13	40.23	23.92	26.14	37.29

NOTES:

1. See Table 13 for notes.

TABLE 13: Double span CLT floor slabs, SDL=40 psf. Includes panel self-weight and live load as below. Maximum span in [ft].

CLT PANEL		NTIAL SPA DAD=40 PS		OFFICE SPACE LIVE LOAD=50 PSF			MECHANICAL ROOM LIVE LOAD=75 PSF			STORAGE AREA LIVE LOAD=100 PSF		
TANLE	VIBRATION	L/240	ASD	VIBRATION	L/240	ASD	VIBRATION	L/240	ASD	VIBRATION	L/240	ASD
87 V SP	10.25	12.64	10.48	10.21	12.34	9.94	10.14	11.70	8.89	10.06	11.17	8.12
87 E SP	11.03	13.73	17.54	10.99	13.41	16.64	10.91	12.71	14.89	10.83	12.14	13.60
105 V SP	11.95	14.93	12.34	11.91	14.59	11.72	11.82	13.85	10.51	11.74	13.23	9.61
105 E SP	12.85	16.19	20.59	12.81	15.82	19.56	12.71	15.01	17.53	12.62	14.34	16.03
139 V SP	14.82	19.02	15.36	14.78	18.62	14.62	14.67	17.72	13.16	14.58	16.98	12.07
139 E SP	15.94	20.67	25.70	15.89	20.22	24.46	15.78	19.26	22.02	15.68	18.44	20.18
175 V SP	17.41	22.61	17.93	17.36	22.14	17.10	17.25	21.13	15.45	17.15	20.27	14.19
175 E SP	18.71	24.50	29.88	18.66	23.99	28.50	18.54	22.89	25.74	18.42	21.95	23.66
191 V SP	19.03	24.98	19.87	18.98	24.48	18.97	18.86	23.39	17.16	18.74	22.46	15.79
191 E SP	20.48	27.15	33.24	20.42	26.61	31.73	20.29	25.42	28.71	20.17	24.41	26.42
243 V SP	23.00	30.65	24.08	22.95	30.08	23.05	22.81	28.82	20.95	22.69	27.74	19.34
243 E SP	24.74	33.27	40.25	24.68	32.65	38.52	24.54	31.28	35.02	24.40	30.10	32.33
245 V SP	22.39	29.61	22.89	22.34	29.06	21.91	22.21	27.83	19.92	22.09	26.78	18.39
245 E SP	24.05	32.07	38.18	23.99	31.47	36.55	23.85	30.14	33.23	23.72	29.00	30.67
315 V SP	27.02	36.10	27.42	26.96	35.48	26.32	26.82	34.10	24.07	26.69	32.90	22.31
315 E SP	29.06	39.17	45.83	29.00	38.49	44.00	28.85	36.99	40.23	28.70	35.68	37.29

NOTES:

1. For panel properties refer to Table 9. Span Tables are intended for Preliminary Sizing only.

2. Span Table includes self-weight plus a superimposed dead load of SDL=40psf. This is SDL covers a typical 2" thick concrete topping + 15psf for miscellaneous imposed dead loads.

3. For double span situations, both spans are assumed to be equal. Live load pattern loading has not been considered. Live loads are assumed to be uniform over both spans.

4. Deflection checks were made assuming a maximum allowable deformation of L/240 (L = span) under total load, including creep behavior as defined on NDS clause 3.5.2 with Kcr=2.0

5. Vibration design is based on the approach outlined in the CLT Handbook as described on the latest US Mass Timber Floor Vibration Design Guide. Vibration span values are increased by 20% for double span situations based on the US CLT Handbook and the Mass Timber Floor Vibration Guide. The effect of flexible supports (e.g. glulam beams) is not considered on the vibration results presented. More sophisticated vibration analysis might be required.

6. ASD spans shown are established not to exceed the maximum Moment and Shear capacities of the panels, as per ASD design methodology defined on the NDS. All adjustment factors outlined in NDS Table 10.3.1 have assumed as 1.0

7. Span table values are only valid the major strength direction of the CLT panels.

8. Some of the indicated spans exceed manufacturing capacities (60' single span panel, 2x30' for double span.) In some manufacturing plants and conditions, the maximum limit might be reduced. Contact Mercer Mass Timber for more details.

11. Roof Span Tables, Western Species (SPF, DF-L)

TABLE 14: Single span CLT roof slabs, SDL=25 psf and LR=20psf. Includes panel self-weight and snow loads as below. Maximum span in [ft].

CLT		SNOW ROOF LOAD S=20 PSF		SNOW ROOF LOAD S=30 PSF		SNOW ROOF LOAD S=50 PSF			SNOW ROOF LOAD S=100 PSF			
PANEL	TOTAL L/240	SNOW L/360	ASD	TOTAL L/240	SNOW L/360	ASD	TOTAL L/240	SNOW L/360	ASD	TOTAL L/240	SNOW L/360	ASD
87 V	10.92	15.87	14.57	10.92	13.82	13.39	10.92	11.58	11.69	10.92	9.07	9.26
87 E	11.91	17.25	22.73	11.91	15.01	20.87	11.91	12.58	18.21	11.91	9.84	14.41
90 V	11.07	16.19	14.81	11.07	14.08	13.62	11.07	11.78	11.90	11.07	9.19	9.44
105 V	12.79	18.94	17.07	12.79	16.47	15.73	12.79	13.78	13.79	12.79	10.75	10.97
105 E	13.93	20.55	26.62	13.93	17.86	24.51	13.93	14.94	21.45	13.93	11.64	17.05
139 V	16.27	24.57	21.07	16.27	21.40	19.51	16.27	17.96	17.20	16.27	14.11	13.79
139 E	17.77	26.68	32.88	17.77	23.23	30.41	17.77	19.49	26.77	17.77	15.31	21.42
150 V	16.62	25.39	21.25	16.62	22.10	19.70	16.62	18.52	17.41	16.62	14.51	13.99
175 V	19.12	29.72	24.30	19.12	25.86	22.59	19.12	21.68	20.03	19.12	16.98	16.18
175 E	20.88	32.26	37.96	20.88	28.07	35.25	20.88	23.52	31.21	20.88	18.40	25.15
191 V	21.15	33.11	26.90	21.15	28.85	25.06	21.15	24.22	22.28	21.15	19.04	18.05
191 E	23.15	35.97	42.00	23.15	31.34	39.07	23.15	26.31	34.68	23.15	20.68	28.03
243 V	25.74	41.59	32.20	25.74	36.25	30.14	25.74	30.44	26.99	25.74	23.95	22.08
243 E	28.20	45.20	50.41	28.20	39.39	47.13	28.20	33.07	42.13	28.20	26.01	34.37
245 V	24.77	40.24	30.58	24.77	35.04	28.64	24.77	29.39	25.65	24.77	23.06	20.99
245 E	27.16	43.70	47.79	27.16	38.06	44.69	27.16	31.93	39.96	27.16	25.07	32.61
315 V	29.95	50.66	36.21	29.95	44.11	34.11	29.95	37.00	30.81	29.95	29.04	25.50
315 E	32.57	55.02	56.00	32.57	47.92	52.75	32.57	40.21	47.65	32.57	31.58	39.44

NOTES:

1. See Table 15 for notes.

CLT		V ROOF LOA S=20 PSF	٨D		SNOW ROOF LOAD S=30 PSF			SNOW ROOF LOAD S=50 PSF			SNOW ROOF LOAD S=100 PSF		
PANEL	TOTAL L/240	SNOW L/360	ASD	TOTAL L/240	SNOW L/360	ASD	TOTAL L/240	SNOW L/360	ASD	TOTAL L/240	SNOW L/360	ASD	
87 V	14.81	21.39	14.57	14.81	18.65	13.39	14.81	15.67	11.69	14.81	12.35	9.26	
87 E	16.15	23.26	22.73	16.15	20.27	20.87	16.15	17.03	18.21	16.15	13.42	14.41	
90 V	15.05	21.85	14.81	15.05	19.04	13.62	15.05	15.99	11.90	15.05	12.57	9.44	
105 V	17.39	25.56	17.07	17.39	22.27	15.73	17.39	18.70	13.79	17.39	14.71	10.97	
105 E	18.97	27.75	26.62	18.97	24.17	24.51	18.97	20.29	21.45	18.97	15.95	17.05	
139 V	22.02	33.08	21.07	22.02	28.85	19.51	22.02	24.27	17.20	22.02	19.15	13.79	
139 E	24.05	35.92	32.88	24.05	31.32	30.41	24.05	26.34	26.77	24.05	20.78	21.42	
150 V	22.55	34.22	21.25	22.55	29.83	19.70	22.55	25.07	17.41	22.55	19.75	13.99	
175 V	25.95	40.04	24.30	25.95	34.91	22.59	25.95	29.34	20.03	25.95	23.12	16.18	
175 E	28.36	43.49	37.96	28.36	37.91	35.25	28.36	31.86	31.21	28.36	25.09	25.15	
191 V	28.62	44.56	26.90	28.62	38.87	25.06	28.62	32.70	22.28	28.62	25.82	18.05	
191 E	31.32	48.41	42.00	31.32	42.22	39.07	31.32	35.52	34.68	31.32	28.04	28.03	
243 V	34.82	55.96	32.20	34.82	48.81	30.14	34.82	41.07	26.99	34.82	32.44	22.08	
243 E	38.15	60.82	50.41	38.15	53.05	47.13	38.15	44.64	42.13	38.15	35.25	34.37	
245 V	33.61	54.20	30.58	33.61	47.26	28.64	33.61	39.74	25.65	33.61	31.34	20.99	
245 E	36.82	58.84	47.79	36.82	51.32	44.69	36.82	43.15	39.96	36.82	34.04	32.61	
315 V	40.67	68.22	36.21	40.67	59.49	34.11	40.67	50.02	30.81	40.67	39.46	25.50	
315 E	44.19	74.07	56.00	44.19	64.60	52.75	44.19	54.33	47.65	44.19	42.87	39.44	

TABLE 15: Single span CLT roof slabs, SDL=25 psf and LR=20psf. Includes panel self-weight and snow loads as below. Maximum span in [ft].

NOTES:

1. For panel properties refer to Table 8. Span Tables are intended for Preliminary Sizing only.

2. Span Table includes self weight plus a superimposed dead load of SDL=25psf. This SDL covers a typical roof finishes + 15psf for miscellaneous imposed dead loads. An ordinary roof live load or Lr=20psf is also considered for Total deflection and ASD calculations.

3. For double span situations, both spans are assumed to be equal. Snow load pattern loading or snow drifts have not been considered. Snow loads are assumed to be uniform over both spans. Deflection checks were made assuming a maximum allowable deformation of L/240 (L = span) under total load, including creep behavior as defined on NDS clause 3.5.2 with Kcr=2.0

4. Deflection checks were made assuming for total load composed of D+Lr for a deformation of limit of L/240, i.e., including creep behaviour as defined on NDS clause 3.5.2 with Kcr=2.0, as well as for the instantaneous deflection under the specified Snow Load for a deflection limit of L/360.ASD spans shown are established not to exceed the maximum Moment and Shear capacities of the panels, as per ASD design methodology defined on the NDS. All adjustment factors outlined in NDS Table 10.3.1 have assumed as 1.0

5. ASD spans shown are established not to exceed the maximum Moment and Shear capacities of the panels, as per ASD design methodology defined on the NDS. All adjustment factors outlined in NDS Table 10.3.1 have assumed as 1.0 except the load duration factor, that was taken as CD=1.15

6. Span table values are only valid the major strength direction of the CLT panels.

7. Some of the indicated spans exceed manufacturing capacities (60' single span panel, 2×30' for double span). In some manufacturing plants and conditions, the maximum limit might be reduced. Contact Mercer Mass Timber for more details.

12. Roof Span Tables, Southern Species (SYP)

TABLE 16: Single span CLT roof slabs, SDL=25 psf and LR=20psf. Includes panel self-weight and snow load as below. Maximum span in [ft].

CLT	SNOW ROOF LOAD S=20 PSF		SNOW ROOF LOAD S=30 PSF			SNOW ROOF LOAD S=50 PSF			SNOW ROOF LOAD S=100 PSF			
PANEL	TOTAL L/240	SNOW L/360	ASD	TOTAL L/240	SNOW L/360	ASD	TOTAL L/240	SNOW L/360	ASD	TOTAL L/240	SNOW L/360	ASD
87 V SP	11.70	15.89	13.38	11.70	13.83	12.32	11.70	11.59	10.78	11.70	9.09	8.56
87 E SP	12.71	17.26	22.40	12.71	15.03	20.62	12.71	12.59	18.04	12.71	9.86	14.33
105 V SP	13.75	18.98	15.65	13.75	16.51	14.44	13.75	13.83	12.69	13.75	10.82	10.12
105 E SP	14.91	20.60	26.11	14.91	17.91	24.10	14.91	15.00	21.17	14.91	11.72	16.88
139 V SP	17.40	24.58	19.24	17.40	21.41	17.84	17.40	17.98	15.78	17.40	14.13	12.69
139 E SP	18.91	26.70	32.18	18.91	23.26	29.85	18.91	19.53	26.39	18.91	15.35	21.23
175 V SP	20.53	29.77	22.19	20.53	25.93	20.67	20.53	21.75	18.39	20.53	17.08	14.91
175 E SP	22.23	32.28	36.98	22.23	28.11	34.46	22.23	23.57	30.65	22.23	18.49	24.85
191 V SP	22.63	33.13	24.47	22.63	28.87	22.84	22.63	24.25	20.37	22.63	19.08	16.57
191 E SP	24.59	36.01	40.93	24.59	31.38	38.21	24.59	26.35	34.08	24.59	20.73	27.72
243 V SP	27.53	41.64	29.22	27.53	36.29	27.43	27.53	30.49	24.65	27.53	24.01	20.26
243 E SP	29.88	45.22	48.85	29.88	39.41	45.85	29.88	33.10	41.21	29.88	26.05	33.86
245 V SP	26.57	40.33	27.76	26.57	35.13	26.06	26.57	29.48	23.43	26.57	23.16	19.26
245 E SP	28.77	43.70	46.32	28.77	38.06	43.48	28.77	31.93	39.09	28.77	25.07	32.13
315 V SP	32.09	50.70	32.71	32.09	44.17	30.90	32.09	37.08	28.02	32.09	29.14	23.32
315 E SP	34.80	55.02	54.69	34.80	47.92	51.65	34.80	40.21	46.84	34.80	31.58	38.97

NOTES:

1. See Table 17 for notes.

	SNOV	V ROOF LOA	D	SNOV	V ROOF LOA	٨D	SNOV	V ROOF LOA	D	SNOV	V ROOF LOA	٨D
CLT	:	S=20 PSF		:	S=30 PSF		:	S=50 PSF		S	=100 PSF	
PANEL	TOTAL L/240	SNOW L/360	ASD									
87 V SP	15.82	21.40	13.38	15.82	18.66	12.32	15.82	15.69	10.78	15.82	12.36	8.56
87 E SP	17.20	23.27	22.40	17.20	20.28	20.62	17.20	17.05	18.04	17.20	13.43	14.33
105 V SP	18.63	25.59	15.65	18.63	22.31	14.44	18.63	18.74	12.69	18.63	14.76	10.12
105 E SP	20.22	27.78	26.11	20.22	24.21	24.10	20.22	20.34	21.17	20.22	16.00	16.88
139 V SP	23.51	33.08	19.24	23.51	28.86	17.84	23.51	24.27	15.78	23.51	19.16	12.69
139 E SP	25.54	35.94	32.18	25.54	31.35	29.85	25.54	26.37	26.39	25.54	20.82	21.23
175 V SP	27.77	40.09	22.19	27.77	34.96	20.67	27.77	29.40	18.39	27.77	23.19	14.91
175 E SP	30.10	43.48	36.98	30.10	37.91	34.46	30.10	31.88	30.65	30.10	25.14	24.85
191 V SP	30.56	44.57	24.47	30.56	38.88	22.84	30.56	32.72	20.37	30.56	25.84	16.57
191 E SP	33.21	48.45	40.93	33.21	42.26	38.21	33.21	35.56	34.08	33.21	28.08	27.72
243 V SP	37.18	56.00	29.22	37.18	48.86	27.43	37.18	41.12	24.65	37.18	32.50	20.26
243 E SP	40.37	60.83	48.85	40.37	53.07	45.85	40.37	44.65	41.21	40.37	35.27	33.86
245 V SP	35.95	54.28	27.76	35.95	47.34	26.06	35.95	39.82	23.43	35.95	31.43	19.26
245 E SP	38.95	58.84	46.32	38.95	51.32	43.48	38.95	43.15	39.09	38.95	34.04	32.13
315 V SP	43.43	68.23	32.71	43.43	59.51	30.90	43.43	50.06	28.02	43.43	39.52	23.32
315 E SP	47.14	74.07	54.69	47.14	64.60	51.65	47.14	54.33	46.84	47.14	42.87	38.97

TABLE 17: Double span CLT roof slabs, SDL=25 psf and LR=20psf. Includes panel self-weight and snow load as below. Maximum span in [ft].

NOTES:

1. For panel properties refer to Table 9. Span Tables should be used under dry conditions and for Preliminary Sizing only.

2. Span Table includes self weight plus a superimposed dead load of SDL=25psf. This SDL covers a typical roof finishes + 15psf for miscellaneous imposed dead loads. An ordinary roof live load or Lr=20psf is also considered for Total deflection and ASD calculations.

3. For double span situations, both spans are assumed to be equal. Snow load pattern loading or snow drifts have not been considered. Snow loads are assumed to be uniform over both spans.

4. Deflection checks were made assuming for total load composed of D+Lr for a deformation of limit of L/240, i.e., including creep behaviour as defined on NDS clause 3.5.2 with Kcr=2.0, as well as for the instantaneous deflection under the specified Snow Load for a deflection limit of L/360.

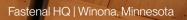
5. ASD spans shown are established not to exceed the maximum Moment and Shear capacities of the panels, as per ASD design methodology defined on the NDS. All adjustment factors outlined in NDS Table 10.3.1 have assumed as 1.0 except the load duration factor, that was taken as CD=1.15

6. Span table values are only valid the major strength direction of the CLT panels.

7. Some of the indicated spans exceed manufacturing capacities (60' single span panel, 2×30' for double span). In some manufacturing plants and conditions, the maximum limit might be reduced. Contact Mercer Mass Timber for more details.

	CLT LAYUP	LAYUP	THICKNESS,	IN-PLANE S	HEAR STRESS		EAR CAPACITY
	LAYUP	ID	t _p (in)	F _{v,e,o} (psi)	F _{v,E,90} (psi)	$F_{V,E,0}T_{P}$ (lbs/ft of width)	$F_{V,E,90} T_P$ (lbs/ft of width)
		87 V	3.43	175	235	7,200	9,700
	V2.1 -	139 V	5.47	175	235	11,500	15,400
	VZ.1	191 V	7.52	175	235	15,800	21,200
		243 V	9.57	175	235	20,100	27,000
		90 V	3.54	190	215	8,100	9,100
		105 V	4.14	195	290	9,700	14,400
	V2M1.1	150 V	5.90	240	235	17,000	16,600
Ļ	1.4V 875 SPF 1.4V - 875 DF-L -	175 V	6.9	270	290	22,400	24,000
SPF DF-L	875 DI-L _	245 V	9.66	270	290	31,300	33,600
н		315 V	12.42	270	290	40,200	43,200
S		87 E	3.43	175	235	7,200	9,700
	E1M4	139 E	5.47	175	235	11,500	15,400
	1.8M 2100 SPF	191 E	7.52	175	235	15,800	21,200
		243 E	9.57	175	235	20,100	27,000
		105 E	4.14	195	290	9,700	14,400
	-	175 E	6.9	270	290	22,400	24,000
	E1M5 -	245 E	9.66	270	290	31,300	33,600
		315 E	12.42	270	290	40,200	43,200
		87 V SP	3.43	193	259	7,900	10,700
		139 V SP	5.47	193	259	12,700	17,000
	V3.1 -	191 V SP	7.52	193	259	17,400	23,400
		243 V SP	9.57	193	259	22,200	29,700
		105 V SP	4.14	215	319	10,700	15,800
		150 V SP	5.900	240	235	17,000	16,600
	V3M1	175 V SP	6.9	297	319	24,600	26,400
	1.4V 750 SYP -	245 V SP	9.66	297	319	34,400	37,000
SYP		315 V SP	12.42	297	259	44,300	38,600
Ś		87 E SP	3.43	193	259	7,900	10,700
			5.43	193	259		
	E4M3	139 E SP 191 E SP	7.52	193	259	12,700	17,000
						17,400	23,400
		243 E SP	9.57	193	259	22,200	29,700
	-	105 E SP	4.14 6.9	215 297	319 319	10,700	15,800
	E4M2	175 E SP 245 E SP	9.66	297	319	24,600	26,400
	1.0012100 511					34,400	37,000
		315 E SP	12.42	297	319	44,300	47,500

TABLE 18: Mercer CLT in-plane shear design properties


NOTES:

1. The tabulated values are allowable design values.

2. The tabulated values are for the full thickness (tP) of the CLT. The values shall be reduced when the CLT panel thickness is less than the full thickness.

3. Some values are based on test results from other layups. Refer to the relevant APA and PFS-TECO documents for more details.

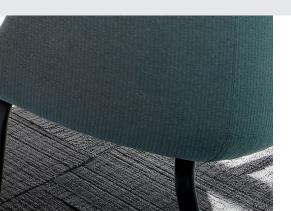
*Not all layups shown. Some layups might be specific to a factory. Contact Mercer Mass Timber for more details.

1

1

DUST

-


N/4

112

MERCER GLULAM BEAMS AND COLUMNS

- 1. Code Acceptance and Quality Assurance Standards
- 2. Adhesives
- 3. Product Characteristics
- 4. Appearance Classifications
- 5. Camber Standards
- 6. Allowable Design Stress Properties
- 7. Load Capacity Tables
- 8. Engineering Properties

Mercer Mass Timber Glulam Beams and Columns

Mercer glulam is manufactured using the highest-quality, sustainably harvested lumber, produced to exacting standards and finished to create North America's most beautiful glulam beams and columns; this allows you to expose the structural elements of your building as a high-grade visual component.

Manufactured in a wide range of shapes, sizes and finish options to match the vision of your design, with options like factory-installed connections and factory-applied stain, Mercer glulam beams and columns stand above all others. When combined with Mercer CLT walls, floors and roof panels, Mercer glulam is a key component of beautiful, economically efficient structures.

The technical information in this guide is compiled to support you in developing designs that specify Mercer glulam beams and columns. If you have questions and need help, let our qualified team of mass timber specialists and technical support representatives help you specify the right solution for your project.

MERCER GLULAM ADVANTAGES:

- North American (US and Canada) code-approved
- Range of shapes and sizes
- Superior wood fiber and appearance
- Engineering, BIM coordination, fabrication approval services available
- Available in sanded, high-quality finish
- Prefabricated kit-of-parts, CNCfabricated to tight tolerances
- Top-notch project delivery experience

- BIM modeling options
- Shop-assembled steel connections, proprietary hangers and reinforcement screws
- Rigorous quality control process
- Delivered in coordinated sequence to installation schedule
- Installation services available

1. Code-approved to North American Standards

The International Building Code (IBC) recognize structural glue-laminated timber as a structural material for wood construction when manufactured in accordance with ANSI A190.1 Standard for Wood Products – Structural glue-laminated timber.

The IBC approves the use of structural glue-laminated timber as a structural member for Type IV Construction and Chapter 5 of the NDS references design values, design equations and overall engineering design specification for structural glue-laminated timber.

Manufacturers of glue-laminated timber, certified in North America, adhere to the standards set forth as described above.

PRODUCT QUALITY ASSURED

We are proud of our ongoing certification and adherence to the North American cross-laminated timber and glue-laminated timber standards referenced throughout this guide. Mercer glulam is certified to meet the requirements of Standard for Wood Products – Structural Gluelaminated Timber and Cross-laminated Timber (CLT) as described in ANSI A190.1-2017.

These standards outline the quality control requirements required by ANSI and are verified by the APA – The Engineered Wood Association (www.apawood.org) through ongoing and monthly independent thirdparty inspection visits to Mercer's manufacturing operations. For more information on destructive performance testing, Table 18 on page 55.

By adhering to these standards, Mercer can assure a standard of quality to the professionals who specify our products.

2. Adhesives

MERCER MASS TIMBER ADHESIVE SYSTEM

The manufacturing of all code-approved mass timber products to produce long length lamellas requires adhesives approved for face bond lamination and end-to-end finger jointing. MMT uses adhesives specific to our manufacturing processes that are certified to North American testing and manufacturing standards.

All adhesives must conform to ASTM testing methods for fire, heat and moisture and must support ANSI manufacturing standards (see Table 11 below). These test methods and manufacturing standards are approved in the US by the International Building Code (IBC). The IBC is a model building code developed by the International Code Council (ICC).

The adhesive component is product thickness and depth dependent and comprises approximately 0.3% by weight of Mercer's mass timber building products.

GLUE-BOND DURABILITY

The structural integrity of glulam components depends upon the integrity of the glue-bond between the component lumber elements. This is true for the entire service life of these mass timber components. Conditions that can impact the glue-bond integrity are exposure to elevated heat (such as a fire event) and exposure to high moisture conditions for extended periods.

FIRE PERFORMANCE

The fire resistance of glue-laminated timber is based on the certification requirements of the North American testing and manufacturing mass timber standards. These standards require rigorous adhesive heat durability testing to ensure mass timber product structural integrity under the most severe fire conditions. Mercer gluam products complies with these standards.

EMISSIONS

Both Henkel and Hexion adhesives used by MMT for manufacturing our mass timber products are certified to UL GREENGUARD Gold. GREENGUARD Gold certified products are qualified to meet UL GREENGUARD standards for low chemical emissions into indoor air during product usage. These adhesives are formulated to meet or exceed all global emissions standards.

TABLE 19: Adhesives for glulam and CLT mass timber products

			ENVICENCE	ADHESIVE PERFORMANCE TESTING				
ADHESIVE APPLICATION	ADHESIVE BRAND	ADHESIVE TYPE	EMISSIONS CERTIFICATION	FULL SCALE FIRE TEST	HEAT DELAMINATION	MOISTURE DURABILITY		
Finger Joints CLT/Glulam	Hexion Cascomel™	Melamine Formaldehyde (MF)	UL GREENGUARD Gold	✓	✓	✓		
Face Bond Glulam	Hexion EcoBind™	Melamine Formaldehyde (MF)	UL GREENGUARD Gold	\checkmark	\checkmark	✓		

3. Mercer Glulam Product Characteristics

TABLE 20: Product characteristics

PRODUCT CHARACTERISTICS	DOUGLAS-FIR	SOUTHERN PINE				
WOOD SPECIES	Interior Douglas-fir (Pseudotsuga menziesii var. glauca)	Southern Yellow pine (Pinus palustris)				
FACE BOND GLUE TYPE	Hexion EcoBind™	Henkel Loctite HB-X PURBOND				
FINGER JOINT GLUE TYPE	Hexion Cascomel®	Hexion Cascomel®				
SFI/FSC CERTIFICATION	Available up	on request				
MOISTURE CONTENT	12% (+/-3%) at time	e of manufacturing				
SPECIFIC GRAVITY, SG	0.50	0.55				
DENSITY	35 lbs/ft ³	40 lbs/ft ³				
CERTIFICATIONS	ANSI A190.1, ANSI 117, C	SA 0122 and CSA 0177				
	DIMENSIONAL TOLERANCES					
WIDTH	+/- 1/16	" (2 mm)				
DEPTH	1/8" (3 mm) per foot (305 mm) of depth3/16" (5 mm) or 1/16" (2 mm) per foot of depth, whichever is larger.					
LENGTH	Up to 20' (6.1 m), +⁄- 1/16" (2 mm). Over 20' (6.1 m), +⁄- 1/16" (2 mm) per 20' (6.1 m) of length or fraction thereof.					
CAMBER OR STRAIGHTNESS	Tolerances for camber are applicable at the time deflection. Up to 20' (6.1 m), th Over 20' (6.1 m), the tolerance shall incre (6.1 m) or fraction thereof, bu The tolerances are intended for use with straight or	e tolerance is +/- 1/4" (6 mm). ease 1/8" (3 mm) per each additional 20' t not to exceed 3/4" (19 mm). slightly cambered members and are not applicab				
	to curved member Refer to table <23> for additional i	nformation on camber availability.				
SQUARENESS OF CROSS SECTION	The tolerance for squareness shall be within +/ ¼" (2 specially shaped so Squareness shall be measured by placing one leg measuring the offset from the other leg of the squar	ection is specified. of a square across a top and/or bottom face and				
MACHINED SURFACES	+/- 1/8" (3 mm) with all tooling units exce					
MIN MAX WIDTH	See pa	ge 64				
AVAILABLE SIZES	MERCER OKANAGAN	MERCER CONWAY				
MAX LENGTH STANDARD	60' (18.3 m) 65' (19.8 m)					
MAX LENGTH SPECIALTY	110' (33.5 m)	65' (19.8 m)				
MAX DEPTH STANDARD	48' (12 m) 42.48' (10.8 m)					
MAX DEPTH SPECIALTY	96' (2,438 mm) -					
MINIMUM DEPTH	4 1/8" (105 mm) 4 1/8" (105 mm)					

4. Glulam Appearance Classifications

Listed below are the ANSI A190.1 appearance classifications that glulam products must meet. At MMT, glulam exceeds visual standards set by ANSI A190.1 (see Table 13 below). Lower-grade appearances are available by request. For more on Mercer glulam finishes, refer to page 42.

INDUSTRIAL

- Glulam laminations may possess the natural growth characteristics of the lumber grade. No voids or low laminations are filled.
- Sides are planed true to specified dimensions.
- Occasional planing misses are permitted.

- No sanding.
- Members have a "hit and miss" (more miss) appearance.
- Wood inserts and filling are not required.
- Glue smear is allowed.

ARCHITECTURAL

- The wide face of laminations that are exposed should be free of loose knots. Otherwise, glulam laminations may possess the natural growth characteristics of the lumber grade.
- Exposed corners should be eased.
- On exposed surfaces, voids measuring over 3/4" (19 mm) long should be filled.
- Open knot holes on the wide face that are exposed should be filled.
- All occurrences of pencil wane should be repaired with filler up to a maximum of 8" (203 mm). For pencil wane longer than 8" (203 mm), wood inserts should be used.

- Voids greater than 1/16" (2 mm) wide in edge joints on the wide exposed face should be filled with wood tone color filler.
- Exposed faces should be surfaced smooth planed.
- Misses, wane and low laminations should not be permitted. Occasional repaired pencil wane should be permitted subject to Section 11.3.2.1.
- Corners of the member exposed should be eased with a minimum radius of 1/8" (3 mm).

PREMIUM

- Laminations should be selected to minimize loose knots, knot holes, pencil wane, bark inclusions and visible voids after final member surfacing.
- Knots should be limited to 20% of the net face of the lamination and not over two maximum sized knots should occur in a 6' (1.83 m) length. Otherwise, laminations are permitted to possess their natural growth characteristics.
- On exposed surfaces, voids measuring over 3/4" (19 mm) should be filled, or with clear wood inserts to match wood tone and grain color. A void not repaired is permitted to be longer than 3/4" (19 mm) if its area does not exceed 1/2" squared (3.23 cm²).
- Repair requirements as noted above will apply when occasional voids occur due to loose knots, unsound knots or knotholes.

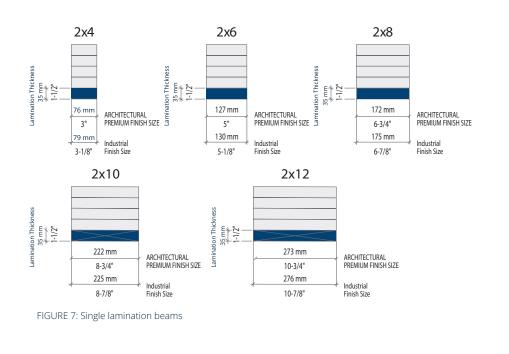
- All occurrences of pencil wane should be repaired with filler up to a maximum of 8" (203 mm).
 For pencil wane longer than 8" (203 mm), wood inserts should be used.
- Voids greater than 1/16" (2 mm) wide in edge joints on the wide exposed face should be filled with wood tone color filler.
- Exposed faces should be surfaced smooth planed.
- Misses, wane and low laminations should not be permitted. Occasional repaired pencil wane should be permitted.
- Corners of the member exposed should be eased with a minimum radius of 1/8" (3 mm).

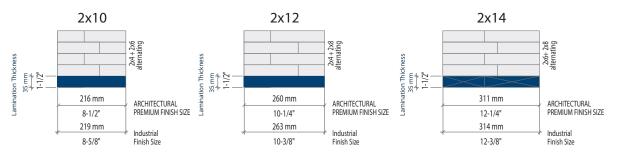
TABLE 21: Glulam additional appearance standard features

ADDITIONAL FEATURES FOR MERCER MASS TIMBER GLULAM BEAMS AND COLUMNS INCLUDE:

1. All Architectural and Premium Mercer Mass Timber glulam beams and columns exposed faces surfaces are sanded smooth to 80 grit.

2. Mercer Mass Timber uses epoxy putty for correcting larger voids to assure adhesion.


3. For a staggered multi-piece lamination layup, a full length wood spline insert is applied on the visible face to cover gaps of the adjacent boards.


4. Mercer Mass Timber glulam beams and columns can be coated with a factory-applied light-bodied sealer that provides some temporary protection to the finished surface during shipping and through the construction phase.

5. For additional information on appearance classifications, refer to ANSI A190.1.

Mercer Glulam Standard Width Sectional Diagram

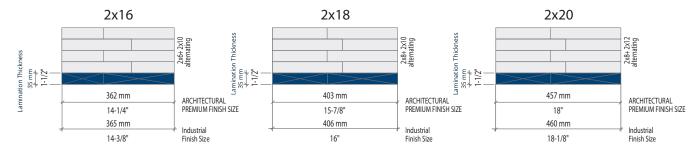
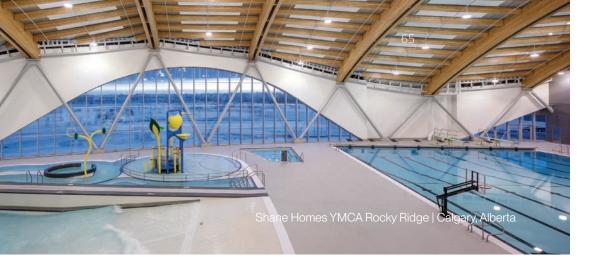



FIGURE 8: Staggered multi-piece lamination

NOTE: All premium finished beams used for either appearance grade or with tight tolerance connections are additional undersized by 6mm in depth from full lamination roundings: 35mm × # OF LAMS - 6mm.

FINISHED WIDTHS*											
NOMINAL	INDUS	TRIAL	ARCHITE	CTURAL	PREMIUM						
SIZE	(in)	(mm)	(in)	(mm)	(in)	(mm)					
2x4	3-1/8	79	3	76	3	76					
2x6	5-1/8	130	5	127	5	127					
2x8	6-7/8	175	6-3/4	172	6-3/4	172					
2x10	8-5/8	219	8-1/2	216	8-1/2	216					
2x12	10-3/8	263	10-1/4	260	10-1/4	260					
2x14	12-3/8	314	12-1/4	311	12-1/4	311					
2x16	14-3/8	365	14-1/4	362	14-1/4	362					
2x18	16	406	15-7/8	403	15-7/8	403					
2x20	18-1/8	460	18	457	18	457					

STAGGERED MULTIPLE PIECE LAMINATION: MMT utilizes a staggered multiple piece lamination layup technique as described in ANSI A190.1, section 9.3, in the manufacture of wide-section members for glulam beams and columns. Mercer analysis concludes staggered multiple piece lamination layup as a preferred methodology as follows:

INCREASED HOMOGENIZATION:

Glulam beams and columns constructed through the staggered multiple piece lamination technique are composed of more individual elements than through a single lamination layup practice. This increased number of elements acts to further diffuse the impact of any one element on the resulting component and creates a more homogeneous construction.

DIMENSIONAL STABILITY:

Based upon the same principle of an increased number of elements within the component, a staggered multiple piece lamination layup reduces the dimensional tendencies of any one element and can potentially increase the overall stability of the component. This can be most prominently realized in wider, deeper sections. TABLE 22: Finished widths of glulam beams

NOTE: Widths noted above apply to all manufactured species.

*Other widths available from Mercer Mass Timber

5. Camber

Four standard levels of camber are available. Camber falling outside these standards is custom processed and will carry additional fabrication costs, such as arches. Standard camber carry no additional costs. Camber cannot be used with complex multi-point connections or pre-engineered tight tolerance connections. Camber should only be used when simple bucket or knife plate connections are used on each end of the beam.

TABLE 23: Camber standards

CAMBER			RADIUS				
CAWIDER	20'	30'	40'	50'	60'	70'	(FT)
1	0.46"	1.03"	1.83"	2.86"	4.12"	5.61"	1,310'
2	0.33"	0.74"	1.31"	2.05"	2.95"	4.01"	1,833'
3	0.23"	0.52"	0.92"	1.43"	2.06"	2.81"	2,620'
4	0.18"	0.41"	0.73"	1.15"	1.65"	2.25"	3,274'

1. Camber shown in inches. Camber is only available at the Mercer Okanagan factory. It is not possible to camber members produced in the Mercer Conway factory.

- 2. Recommended Camber = 1.5 x dead load deflection for roof applications
 - 1 x dead load deflection for floor applications
- 3. Camber is NOT recommended when using tight-tolerance pre-engineered connections.
- Camber is NOT recommended when using beam systems with multiple interconnections as installation becomes difficult and deflection loads can cause dynamic stresses on connections.
- Multiple spap hear applications cannot have camber applied
- 5. Multiple span beam applications cannot have camber applied.

6. Glulam Stress Grades

Mercer glulam structural members are classified as either primarily axially loaded members or primarily bending members per the National Design Specification (NDS). The significance of the member being an axial or bending member influences the type of boards used for the laminations and also the location of where the specific board types exist. For axial members, the entire makeup of laminations is the same and each individual board has the same strength properties. For bending members, the highest quality boards are located on the outer laminations where the tension and compression stresses are the highest.

67

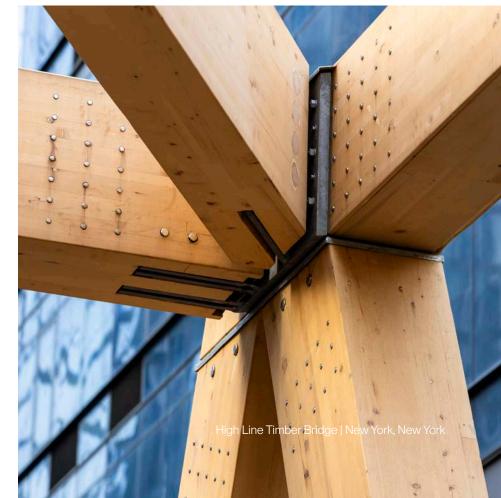
More information on our Mercer glulam stress grades is provided below:

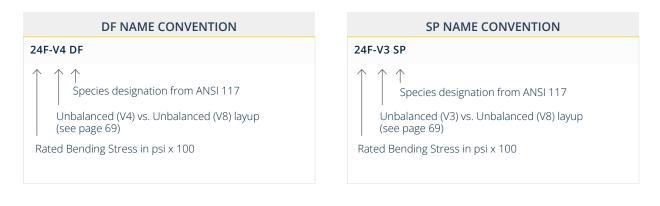
TABLE 24: Glulam column allowable design properties

COLUMN ALLOWABLE DESIGN STRESS PROPERTIES (psi)											
COMBINATION	E _{MEAN}	E _{MIN}	F_{c}	F _τ	$F_{_{BX}}$	Γ _{ΒΥ}	F _{CPX}	F _{CPY}	F_{vx}	F_{vv}	SG
2 DF, L2	1,700,000	850,000	1,950	1,550	2,100	2,300	740	740	300	260	0.50
50 SP, N1D14	1,900,000	1,000,000	2,300	1,550	2,100	2,300	740	740	300	260	0.55

NOTES:

1. Allowable design strengths are shown for prismatic beams with loads applied primarily in axial compression.


2. Properties shown are for allowable strength design (ASD).


3. Design strengths assumes 4 or more laminations.

The values listed for Mercer glulam beams and columns are baseline properties that require modification depending on the size of the member, the type of loads applied and the environmental conditions, as per the National Design Specification for Wood Construction (NDS). Adjustment factors to be considered include:

	Duration of load							
	0.90 dead loads							
C _D	1.00 normal loads							
CD	1.15 snow loads							
	1.25 construction loads							
	1.60 wind and earthquake loads							
C _M	Moisture (wet service)							
C _τ	Temperature							
CL	Beam stability							
C _v	Volume effect							
C _{FU}	Flat use factor							
C _c	Curvature factor							
C_{F}	Form factor							
С _Р С _В	Column stability factor							
C _B	Bearing factor							

Not all factors need be applied in all applications or for all design values. Refer to the National Design Specification for Wood Construction (NDS) for a listing of which adjustment factors are required for specific situations.

TABLE 25: Glulam beam allowable design stress properties

MERCER MASS TIMBER GLULAM BEAM LAYUP DESIGNATIONS AND DESIGN STRESS PROPERTIES (psi)														
COMBINATION		В	ENDIN	g abo	UT X-X			BEND	DING A	BOUT Y-Y			IAL DING	SG
	$F_{_{BX^+}}$	F _{BX-}	F _{CPX}	F_{vx}	Ex	E _{x min}	F _{by}	F _{CPY}	F_{vv}	E _y	E _{y min}	F _T	F_{c}	
24F-V8 DF	2,400	2,400	650	265	1,800,000	950,000	1,550	560	230	1,600,000	850,000	1,650	1,100	0.50
24F-V4 DF	2,400	1,850	650	265	1,800,000	950,000	1,450	560	230	1,600,000	850,000	1,650	1,100	0.50
24F-V8 SP	2,400	2,400	740	300	1,800,000	950,000	1,700	650	260	1,600,000	850,000	1,150	1,650	0.55
24F-V3 SP	2,400	2,000	740	300	1,800,000	950,000	1,700	650	260	1,600,000	850,000	1,150	1,650	0.55

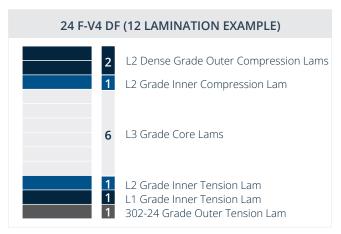
NOTES:

1. Allowable design strengths are shown for prismatic beams with loads applied primarily in bending.

2. Properties shown are for allowable strength design (ASD).

3. The reference allowable shear design value, Fvy, shall be multiplied by 0.4 for members 5,7,9 laminations and 0.5 for all other layups of DF species split-lam layups. Refer to the relevant APA Product report for full details.

4. Design strengths assumes 4 or more laminations.


GLULAM BEAM LAYUP PATTERNS ANSI/APA 117 STANDARD

V4/V3 - UNBALANCED BEAM LAYUP

Use a V4 layup for short cantilever or most economical solution for simple span application.

V8 – BALANCED BEAM LAYUP

When dealing with a beam that is supported by multiple bearings or a beam that is cantilevered over a support, then a V8 balanced layup is typically required.

EXAMPLE FOR 12 LAMINATIONS

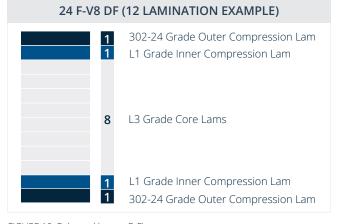


FIGURE 10: Balanced layup - D.Fir **EXAMPLE FOR 12 LAMINATIONS**

24 F-V3 SP (12 LAMINATION EXAMPLE) N1M 1:14 Grade Outer Compression Lam 1 N1M 1:12 Grade Inner Compression Lam 5 N3C 1:8 Grade Core Lams N2M Grade Inner Tension Lams 2 N1D 1:14 Grade Inner Tension Lams 2 302-24 Grade Outer Tension Lam

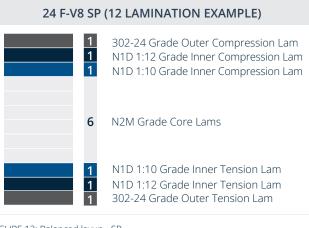


FIGURE 11: Unbalanced layup - SP

FIGURE 12: Balanced layup - SP **EXAMPLE FOR 12 LAMINATIONS**

EXAMPLE FOR 12 LAMINATIONS

1

NOTE: See ANSI 117 for layup requirements of alternative beam depths. Example provided is for 12 laminations.

TABLE 26: Glulam column capacities: 1/6 axial load eccentricity

ALLOWABLE AXIAL CAPACITIES, ECCENTRICITY = 1/6 (B OR D)

	AXIAL CAPACITY (LBS)											
C	COLUMN SIZE	COLUMN LENGTH L (FT)										
B (IN) X D (IN)		10	12	14	16	18	20					
	8.5 × 9.41	71,357	64,088	56,515	49,323	42,817	37,317					
Ц	10.25 × 10.79	106,388	98,771	89,882	80,853	72,152	64,206					
2	12.25 × 13.54	165,480	155,923	145,744	135,107	124,236	113,464					
COMB.	14.25 × 14.92	215,707	205,966	195,596	184,684	173,355	161,765					
Ŭ	15.875 × 16.3	264,079	253,966	243,253	231,979	220,225	208,100					
	18 × 19.06	350,069	338,849	327,084	314,754	301,896	288,582					
	8.5 × 9.41	82,277	74,684	66,494	58,387	50,919	44,483					
SP	10.25 × 10.79	121,622	113,939	104,997	95,515	85,958	76,881					
50	12.25 × 13.54	189,336	180,432	170,478	159,639	148,147	136,334					
COMB.	14.25 × 14.92	246,223	238,035	228,861	218,185	206,539	194,229					
Ŭ	15.875 × 16.3	300,307	291,815	282,353	271,947	260,666	248,604					
	18 × 19.06	398,036	389,286	379,630	369,047	357,555	345,197					

NOTES:

1. These tables are for preliminary design only and final design should be validated by a professional engineer and include detailed analysis of loads, eccentricities and connections.

2. Loads shown are allowable (ASD) axial loads, in pounds (lbf).

3. An axial load eccentricity of 16.6% was assumed on the worst scenario, either along depth or width of the member.

4. All calculations as per NDS 2024

5. Design capacities presented do not account for fire rating.

6. Normal load duration was assumed (CD=1.0). Provided values must be adjusted by CD for other cases.

TABLE 27: Glulam column capacities: 1/2 axial load eccentricity

ALLOWABLE AXIAL CAPACITIES, ECCENTRICITY = 1/2 (B OR D)

	AXIAL CAPACITY (LBS)											
C	OLUMN SIZE		COLUMN LENGTH L (FT)									
E	3 (IN) X D (IN)	10	12	14	16	18	20					
	8.5 × 9.41	35,903	33,627	31,170	28,656	26,055	23,667					
Ы	10.25 × 10.79	52,059	49,613	46,514	43,406	40,332	37,369					
2	12.25 × 13.54	78,990	75,365	71,757	68,144	64,518	60,896					
COMB.	14.25 × 14.92	101,137	97,274	93,470	89,685	85,901	82,107					
Ŭ	15.875 × 16.30	122,367	118,219	114,175	110,179	106,200	102,223					
	18 × 19.06	159,927	155,148	150,555	146,060	141,617	137,196					
	8.5 × 9.41	43,189	40,490	37,570	34,549	31,396	28,487					
SP	10.25 × 10.79	62,582	59,686	56,022	52,337	48,664	45,087					
. 50	12.25 × 13.54	94,998	90,730	86,459	82,169	77,857	73,534					
COMB.	14.25 × 14.92	119,895	115,648	111,456	107,270	103,067	98,831					
Ŭ	15.875 × 16.30	143,611	139,010	134,517	130,066	125,624	121,172					
	18 × 19.06	185,318	180,209	175,316	170,535	165,807	161,097					

NOTES:

1. Column tables are for preliminary design only and final design should include detailed analysis of loads, eccentricities and connections.

2. Loads shown are allowable (ASD) axial loads, in pounds (lbf).

3. An axial load eccentricity of 50% was assumed on the worst scenario, either along depth or width of the member.

4. All calculations as per NDS 2024

5. Design capacities presented do not account for fire rating.

6. Normal load duration was assumed (CD=1.0). Provided values must be adjusted by CD for other cases.

TABLE 28: Engineering properties of glulam beams: Douglas-Fir (D.FIR)

0 01 1													
				3.00"	BEAM \	NIDTH,	B (IN)						
Beam Depth, d (in)	8.03	9.41	10.79	12.17	13.54	14.92	16.30	17.68	19.06	20.43	21.81	23.19	24.57
Weight per ft length (lb/ft)	5.9	6.9	7.9	8.9	9.9	10.9	11.9	12.9	13.9	14.9	15.9	16.9	17.9
A (in ²)	24	28	32	37	41	45	49	53	57	61	65	70	74
Sx (in ³)	32	44	58	74	92	111	133	156	182	209	238	269	302
lx (in ⁴)	129	208	314	451	621	830	1,083	1,382	1,731	2,132	2,594	3,118	3,708
EI (×10 ⁶ lbf-in2)	233	375	565	811	1,117	1,495	1,949	2,487	3,116	3,837	4,669	5,612	6,675
Mr (lbf-ft)	6,448	8,855	11,642	14,811	18,333	22,261	26,569	30,992	35,482	40,204	45,224	50,504	56,042
Vr (lbf)	4,256	4,987	5,719	6,450	7,176	7,908	8,639	9,370	10,102	10,828	11,559	12,291	13,022
				5.00"	BEAM	NIDTH,	B (IN)						
Beam Depth, d (in)	10.79	12.17	13.54	14.92	16.30	17.68	19.06	20.43	21.81	23.19	24.57	25.94	27.32
Weight per ft length (lb/ft)	13.1	14.8	16.5	18.1	19.8	21.5	23.2	24.8	26.5	28.2	29.9	31.5	33.2
A (in ²)	54	61	68	75	82	88	95	102	109	116	123	130	137
Sx (in ³)	97	123	153	186	221	260	303	348	396	448	503	561	622
lx (in ⁴)	523	751	1,034	1,384	1,804	2,303	2,885	3,553	4,323	5,196	6,180	7,273	8,496
EI (×10 ⁶ lbf-in2)	942	1,352	1,862	2,491	3,248	4,145	5,193	6,395	7,781	9,353	11,124	13,091	15,293
Mr (lbf-ft)	19,404	24,685	30,364	36,161	42,402	49,082	56,192	63,670	71,620	79,982	88,753	97,858	107,428
Vr (lbf)	9,531	10,750	11,960	13,179	14,398	15,617	16,836	18,047	19,266	20,485	21,704	22,914	24,133
				6.75"	BEAM	NIDTH,	B (IN)						
Beam Depth, d (in)	14.92	16.30	17.68	19.06	20.43	21.81	23.19	24.57	25.94	27.32	28.70	30.08	31.46
Weight per ft length (lb/ft)	24.5	26.7	29.0	31.3	33.5	35.8	38.0	40.3	42.6	44.8	47.1	49.4	51.6
A (in ²)	101	110	119	129	138	147	157	166	175	184	194	203	212
Sx (in ³)	250	299	352	409	470	535	605	679	757	840	927	1,018	1,113
Ix (in ⁴)	1,868	2,436	3,109	3,895	4,797	5,836	7,015	8,343	9,818	11,470	13,297	15,309	17,515
EI (×10 ⁶ lbf-in2)	3,363	4,385	5,596	7,011	8,634	10,504	12,627	15,018	17,673	20,646	23,935	27,557	31,526
Mr (lbf-ft)	47,374	55,551	64,301	73,616	83,413	93,828	104,784	116,274	128,203	140,740	153,794	167,360	181,434
Vr (lbf)	17,792	19,438	21,083	22,729	24,363	26,008	27,654	29,300	30,933	32,579	34,225	35,870	37,516
				8.50"	BEAM	NIDTH,	B (IN)						
Beam Depth, d (in)	21.81	23.19	24.57	25.94	27.32	28.70	30.08	31.46	32.83	34.21	35.59	36.97	38.35
Weight per ft length (lb/ft)	45.1	47.9	50.8	53.6	56.4	59.3	62.1	65.0	67.8	70.7	73.5	76.4	79.2
A (in ²)	185	197	209	220	232	244	256	267	279	291	303	314	326
Sx (in ³)	674	762	855	953	1,057	1,167	1,282	1,402	1,527	1,658	1,794	1,936	2,084
Ix (in ⁴)	7,349	8,834	10,506	12,364	14,444	16,745	19,278	22,055	25,064	28,359	31,932	35,792	39,952
EI (×10 ⁶ lbf-in2)	13,227	15,901	18,911	22,255	25,999	30,141	34,701	39,700	45,115	51,047	57,477	64,426	71,913
Mr (lbf-ft)	115,461	128,943	143,082	157,762	173,189	189,253	205,947	223,266	241,070	259,616	278,770	298,528	318,885
Vr (lbf)	32,751	34,824	36,896	38,953	41,026	43,098	45,170	47,242	49,300	51,372	53,444	55,517	57,589
				10.25'	' BEAM	WIDTH,	B (IN)						
Beam Depth, d (in)	25.94	27.32	28.70	30.08	31.46	32.83	34.21	35.59	36.97	38.35	39.72	41.10	42.48
Weight per ft length (lb/ft)	64.6	68.1	71.5	74.9	78.4	81.8	85.2	88.7	92.1	95.5	99.0	102.4	105.8
A (in ²)	266	280	294	308	322	337	351	365	379	393	407	421	435
Sx (in ³)	1,150	1,275	1,407	1,546	1,691	1,841	1,999	2,164	2,335	2,512	2,695	2,886	3,083
lx (in ⁴)	14,909	17,417	20,192	23,247	26,596	30,224	34,198	38,506	43,161	48,177	53,527	59,302	65,478
EI (×10 ⁶ lbf-in2)	26,836	31,351	36,346	41,845	47,873	54,404	61,557	69,311	77,690	86,718	96,348	106,743	117,861
Mr (lbf-ft)	186,714	204,973	223,984	243,742	264,239	285,311	307,260	329,929	353,313	377,405	402,020	427,510	453,694
		1. 2		, -	1.55		1.15	1	1.5	1.1.2	1. 5	1. 1	

NOTES:

1. 24F-V8 DF glulam.

- 2. Uniformly distributed loading.
- 3. Depths are based on 35 mm 6 mm lamination thickness minus 6mm planing depth.
- 4. Beam properties calculated based on architectural depths and architectural beam widths.
- 5. Beam weight is based on density of $35lbf/ft^3$
- 6. Beam span for Cv calculations (NDS 5.3.6) assumed to be 18x actual depth and x=10 $\,$
- 7. Beam engineering properties are calculated in accordance with NDS.
- 8. The tabulated shear capacity Vr shall be reduced by Cvr=0.72 for repetitive/

TABLE 28 con't: Engineering properties of glulam beams: Douglas-Fir (D.FIR)

				12 25'		WIDTH							
Poom Donth d (in)	27.32	28.70	20.00					36.97	38.35	39.72	41.10	42.48	43.86
Beam Depth, d (in) Weight per ft length (lb/ft)	81.3	85.5	30.08 89.6	31.46 93.7	32.83 97.7	34.21 101.9	35.59 106.0	110.1	114.2	118.3	122.4	126.5	130.6
A (in ²)	335	352	369	385	402	419	436	453	470	487	504	520	537
Sx (in ³)	1,524	1,682	1,847	2,021	2,201	2,389	2,586	2,791	3,003	3,221	3,449	3,684	3,928
Ix (in ⁴)	20,816	24,132	27,784	31,786	36,122	40,871	46,019	51,583	57,577	63,971	70,873	78,254	86,131
El (×10 ⁶ lbf-in2)	37,469	43,438	50,011	57,215	65,020	73,568	82,834	92,849	103,639	115,148	127,571	140,857	155,036
Mr (lbf-ft)	240,645	262,959	286,153	310,218	334,953	360,724	387,344	414,791	443,073	471,975	501,899	532,641	564,196
Vr (lbf)	59,130	62,116	65,102	68,087	71,055	74,041	77,027	80,012	82,998	85,966	88,952	91,937	94,923
	55,150	02,110	03,102					00,012	02,990	85,900	00,952	91,957	54,925
Decar Death of (in)	22.02	24.24	25.50			WIDTH,		42.40	42.00	45.24	46.64	47.00	40.27
Beam Depth, d (in)	32.83	34.21	35.59	36.97	38.35	39.72	41.10	42.48	43.86	45.24	46.61	47.99	49.37
Weight per ft length (lb/ft)	113.7	118.5	123.3	128.0	132.8	137.6	142.4	147.1	151.9	156.7	161.4	166.2	171.0
A (in ²)	468	488	507	527	547	566	586	605	625	645	664	684	704
Sx (in ³)	2,560	2,780	3,008	3,246	3,493	3,747	4,012	4,286	4,569	4,861	5,160	5,470	5,789
Ix (in ⁴)	42,019	47,544	53,533	60,004	66,978	74,415	82,444	91,031	100,193	109,952	120,246	131,246	142,897
El (×10 ⁶ lbf-in2)	75,634	85,579	96,359	108,007	120,560	133,947	148,399	163,856	180,347	197,914	216,443	236,243	257,215
Mr (lbf-ft)	383,796	413,319	443,817	475,270	507,685	540,793	575,083	610,301	646,453	683,521	721,236	760,120	799,917
Vr (lbf)	82,645	86,125	89,605	93,068	96,548	99,993	103,474	106,936	110,417	113,897	117,342	120,822	124,285
				15.	875" BE	AM WI	DTH						
Beam Depth, d (in)	38.35	39.72	41.10	42.48	43.86	45.24	46.61	47.99	49.37	50.75	52.13	53.50	54.88
Weight per ft length (lb/ft)	148.0	153.3	158.6	163.9	169.2	174.6	179.8	185.2	190.5	195.8	201.1	206.4	211.8
A (in ²)	609	631	653	674	696	718	740	762	784	806	828	849	871
Sx (in ³)	3,891	4,174	4,469	4,775	5,090	5,415	5,748	6,094	6,449	6,815	7,190	7,573	7,969
lx (in ⁴)	74,615	82,901	91,846	101,411	111,619	122,490	133,958	146,213	159,192	172,918	187,411	202,579	218,663
EI (×10 ⁶ lbf-in2)	134,307	149,222	165,323	182,540	200,914	220,482	241,124	263,183	286,546	311,252	337,340	364,642	393,593
Mr (lbf-ft)	559,501	595,992	633,782	672,589	712,436	753,288	794,854	837,714	881,560	926,415	972,246	1,018,723	1,066,520
Vr (lbf)	107,555	111,406	115,275	119,144	123,013	126,882	130,716	134,585	138,454	142,340	146,209	150,043	153,912
				1	8" BEAI	M WIDT	Н						
Beam Depth, d (in)	38.35	39.72	41.10	42.48	43.86	45.24	46.61	47.99	49.37	50.75	52.13	53.50	54.88
Weight per ft length (lb/ft)	167.8	173.8	179.8	185.9	191.9	197.9	203.9	210.0	216.0	222.0	228.1	234.1	240.1
A (in ²)	690	715	740	765	790	814	839	864	889	914	938	963	988
Sx (in ³)	4,412	4,733	5,068	5,414	5,771	6,140	6,518	6,909	7,312	7,727	8,153	8,587	9,035
lx (in ⁴)	84,603	93,998	104,140	114,986	126,560	138,886	151,890	165,784	180,501	196,065	212,498	229,696	247,933
EI (×10 ⁶ lbf-in2)	152,285	169,196	187,452	206,975	227,808	249,995	273,402	298,411	324,902	352,917	382,496	413,453	446,279
Mr (lbf-ft)	626,477	667,325	709,638	753,113	797,715	843,465	889,996	937,982	987,094	1,037,313	1,088,633	1,140,680	1,194,174
Vr (lbf)	121,953	126,317	130,698	135,079	139,478	143,860	148,223	152,605	157,004	161,385	165,766	170,130	174,511
				10.25'	' BEAM	WIDTH	, B (IN)						
Beam Depth, d (in)	25.94	27.32	28.70	30.08	31.46	32.83	34.21	35.59	36.97	38.35	39.72	41.10	42.48
Weight per ft length (lb/ft)	64.6	68.1	71.5	74.9	78.4	81.8	85.2	88.7	92.1	95.5	99.0	102.4	105.8
A (in ²)	266	280	294	308	322	337	351	365	379	393	407	421	435
Sx (in ³)	1,150	1,275	1,407	1,546	1,691	1,841	1,999	2,164	2,335	2,512	2,695	2,886	3,083
Ix (in ⁴)	14,909	17,417	20,192	23,247	26,596	30,224	34,198	38,506	43,161	48,177	53,527	59,302	65,478
EI (×10 ⁶ lbf-in2)	26,836	31,351	36,346	41,845	47,873	54,404	61,557	69,311	77,690	86,718	96,348	106,743	117,861
Mr (lbf-ft)	186,714	204,973	223,984	243,742	264,239	285,311	307,260	329,929	353,313	377,405	402,020	427,510	453,694
Vr (lbf)	46,973	49,472	51,971	54,470	56,969	59,450	61,949	64,448	66,947	69,445	71,926	74,425	76,924

impact loads, design of members at notches and design of members at connections, as per NDS 5.3.10 $\,$

9. These tables do not account for charring fire protection. Fire protection should be provided by encapsulation with a fire rating material as required by the applicable Building Code. Alternatively, NDS Annex B can be used to calculate effective charring to provide fire protection.

10. Assumed modification factors:

- standard term load duration (CD = 1.0)

- dry service condition (CM = 1.0)

- no preservative treatment (CT = 1.0)

- continuous lateral support along compression edge (CL = 1.0)

TABLE 29: Engineering properties of glulam beams: Southern Yellow Pine (SYP)

				3.00"	BEAM	NIDTH,	B (IN)						
Beam Depth, d (in)	8.03	9.41	10.79	12.17	13.54	14.92	16.30	17.68	19.06	20.43	21.81	23.19	24.57
Weight per ft length (lb/ft)	6.7	7.8	9.0	10.1	11.3	12.4	13.6	14.7	15.9	17.0	18.2	19.3	20.5
A (in ²)	24	28	32	37	41	45	49	53	57	61	65	70	74
Sx (in ³)	32	44	58	74	92	111	133	156	182	209	238	269	302
lx (in ⁴)	129	208	314	451	621	830	1,083	1,382	1,731	2,132	2,594	3,118	3,708
EI (×10 ⁶ lbf-in2)	233	375	565	811	1,117	1,495	1,949	2,487	3,116	3,837	4,669	5,612	6,675
Mr (lbf-ft)	6,448	8,855	11,642	14,811	18,333	22,261	26,569	31,125	35,903	40,964	46,381	52,115	58,165
Vr (lbf)	4,818	5,646	6,474	7,302	8,124	8,952	9,780	10,608	11,436	12,258	13,086	13,914	14,742
				5.00"	BEAM	NIDTH,	B (IN)						
Beam Depth, d (in)	10.79	12.17	13.54	14.92	16.30	17.68	19.06	20.43	21.81	23.19	24.57	25.94	27.32
Weight per ft length (lb/ft)	15.0	16.9	18.8	20.7	22.6	24.6	26.5	28.4	30.3	32.2	34.1	36.0	37.9
A (in ²)	54	61	68	75	82	88	95	102	109	116	123	130	137
Sx (in ³)	97	123	153	186	221	260	303	348	396	448	503	561	622
lx (in ⁴)	523	751	1,034	1,384	1,804	2,303	2,885	3,553	4,323	5,196	6,180	7,273	8,496
EI (×10 ⁶ lbf-in2)	942	1,352	1,862	2,491	3,248	4,145	5,193	6,395	7,781	9,353	11,124	13,091	15,293
Mr (lbf-ft)	19,404	24,685	30,460	36,628	43,332	50,567	58,329	66,552	75,352	84,668	94,497	104,759	115,602
Vr (lbf)	10,790	12,170	13,540	14,920	16,300	17,680	19,060	20,430	21,810	23,190	24,570	25,940	27,320
				6.75"	BEAM	NIDTH,	B (IN)						
Beam Depth, d (in)	14.92	16.30	17.68	19.06	20.43	21.81	23.19	24.57	25.94	27.32	28.70	30.08	31.46
Weight per ft length (lb/ft)	28.0	30.6	33.2	35.7	38.3	40.9	43.5	46.1	48.6	51.2	53.8	56.4	59.0
A (in ²)	101	110	119	129	138	147	157	166	175	184	194	203	212
Sx (in ³)	250	299	352	409	470	535	605	679	757	840	927	1,018	1,113
lx (in ⁴)	1,868	2,436	3,109	3,895	4,797	5,836	7,015	8,343	9,818	11,470	13,297	15,309	17,515
EI (×10 ⁶ lbf-in2)	3,363	4,385	5,596	7,011	8,634	10,504	12,627	15,018	17,673	20,646	23,935	27,557	31,526
Mr (lbf-ft)	48,711	57,627	67,249	77,571	88,507	100,211	112,600	125,672	139,319	153,738	168,827	184,585	201,006
Vr (lbf)	20,142	22,005	23,868	25,731	27,581	29,444	31,307	33,170	35,019	36,882	38,745	40,608	42,471
				8.50"	BEAM	NIDTH,	B (IN)						
Beam Depth, d (in)	21.81	23.19	24.57	25.94	27.32	28.70	30.08	31.46	32.83	34.21	35.59	36.97	38.35
Weight per ft length (lb/ft)	51.5	54.8	58.0	61.2	64.5	67.8	71.0	74.3	77.5	80.8	84.0	87.3	90.5
A (in ²)	185	197	209	220	232	244	256	267	279	291	303	314	326
Sx (in ³)	674	762	855	953	1,057	1,167	1,282	1,402	1,527	1,658	1,794	1,936	2,084
lx (in ⁴)	7,349	8,834	10,506	12,364	14,444	16,745	19,278	22,055	25,064	28,359	31,932	35,792	39,952
EI (×10 ⁶ lbf-in2)	13,227	15,901	18,911	22,255	25,999	30,141	34,701	39,700	45,115	51,047	57,477	64,426	71,913
Mr (lbf-ft)	124,745	140,168	156,440	173,428	191,377	210,161	229,776	250,218	271,326	293,405	316,301	340,009	364,528
Vr (lbf)	37,077	39,423	41,769	44,098	46,444	48,790	51,136	53,482	55,811	58,157	60,503	62,849	65,195
				10.25'	' BEAM	WIDTH,	, B (IN)						
Beam Depth, d (in)	25.94	27.32	28.70	30.08	31.46	32.83	34.21	35.59	36.97	38.35	39.72	41.10	42.48
Weight per ft length (lb/ft)	73.9	77.8	81.7	85.6	89.6	93.5	97.4	101.3	105.3	109.2	113.1	117.0	121.0
A (in ²)	266	280	294	308	322	337	351	365	379	393	407	421	435
Sx (in ³)	1,150	1,275	1,407	1,546	1,691	1,841	1,999	2,164	2,335	2,512	2,695	2,886	3,083
lx (in ⁴)	14,909	17,417	20,192	23,247	26,596	30,224	34,198	38,506	43,161	48,177	53,527	59,302	65,478
EI (×10 ⁶ lbf-in2)	26,836	31,351	36,346	41,845	47,873	54,404	61,557	69,311	77,690	86,718	96,348	106,743	117,861
Mr (lbf-ft)	207,186	228,628	251,068	274,501	298,922	324,139	350,516	377,868	406,191	435,483	465,515	496,725	528,892
Vr (lbf)	53,177	56,006	58,835	61,664	64,493	67,302	70,131	72,960	75,789	78,618	81,426	84,255	87,084

TABLE 29 con't: Engineering properties of glulam beams: Southern Yellow Pine (SYP)

				12 25'	' RFAM	WIDTH,	R (INI)						
Beam Depth, d (in)	25.94	27.32	28.70	30.08	31.46	32.83	34.21	35.59	36.97	38.35	39.72	41.10	42.48
Weight per ft length (lb/ft)	88.3	93.0	97.7	102.4	107.1	111.7	116.4	121.1	125.8	130.5	135.2	139.9	144.6
A (in ²)	318	335	352	368	385	402	419	436	453	470	487	503	520
Sx (in ³)	1,374	1,524	1,682	1,847	2,021	2,201	2,389	2,586	2,791	3,003	3,221	3,449	3,684
Ix (in ⁴)	17,818	20,816	24,132	27,784	31,786	36,122	40,871	46,019	51,583	57,577	63,971	70,873	78,254
El (×10 ⁶ lbf-in2)	32,073	37,469	43,438	50,010	57,214	65,019	73,568	82,835	92,849	103,639	115,148	127,571	140,858
Mr (lbf-ft)	245,415	270,814	297,395	325,152	354,079	383,948	415,192	447,591	481,141	515,837	551,411	588,380	626,482
Vr (lbf)	63,553	66,934	70,315	73,696	77,077	80,434	83,815	87,196	90,577	93,958	97,314	100,695	104,076
						WIDTH,							
Beam Depth, d (in)	25.94	27.32	28.70	30.08	31.46	32.83	34.21	35.59	36.97	38.35	39.72	41.10	42.48
Weight per ft length (lb/ft)	102.7	108.1	113.6	119.1	124.5	130.0	135.4	140.9	146.3	151.8	157.2	162.7	168.2
A (in ²)	370	389	409	429	448	468	487	507	527	546	566	586	605
Sx (in ³)	1,598	1,773	1,956	2,149	2,351	2,560	2,780	3,008	3,246	3,493	3,747	4,012	4,286
lx (in ⁴)	20,727	24,215	28,072	32,320	36,975	42,019	47,544	53,533	60,004	66,978	74,415	82,444	91,031
EI (×10 ⁶ lbf-in2)	37,309	43,586	50,530	58,175	66,555	75,634	85,579	96,359	108,008	120,560	133,947	148,399	163,855
Mr (lbf-ft)	283,332	312,656	343,343	375,388	408,785	443,269	479,340	516,745	555,478	595,535	636,606	679,286	723,275
Vr (lbf)	73,929	77,862	81,795	85,728	89,661	93,566	97,499	101,432	105,365	109,298	113,202	117,135	121,068
				15.	875" BE		отн						
Beam Depth, d (in)	25.94	27.32	28.70	30.08	31.46	32.83	34.21	35.59	36.97	38.35	39.72	41.10	42.48
Weight per ft length (lb/ft)	114.4	120.5	126.6	132.6	138.7	144.8	150.9	156.9	163.0	169.1	175.2	181.2	187.3
A (in ²)	412	434	456	478	499	521	543	565	587	609	631	652	674
Sx (in ³)	1,780	1,975	2,179	2,394	2,619	2,852	3,096	3,351	3,616	3,891	4,174	4,469	4,775
Ix (in ⁴)	23,091	26,976	31,274	36,005	41,192	46,811	52,965	59,637	66,847	74,615	82,901	91,846	101,411
EI (×10 ⁶ lbf-in2)	41,564	48,556	56,293	64,809	74,145	84,259	95,338	107,347	120,324	134,308	149,222	165,322	182,540
Mr (lbf-ft)	313,942	346,434	380,437	415,944	452,948	491,158	531,126	572,572	615,490	659,874	705,382	752,673	801,415
Vr (lbf)	82,360	86,741	91,123	95,504	99,886	104,235	108,617	112,998	117,380	121,761	126,111	130,493	134,874
				1	8" BEAI	M WIDT	н						
Beam Depth, d (in)	25.94	27.32	28.70	30.08	31.46	32.83	34.21	35.59	36.97	38.35	39.72	41.10	42.48
Weight per ft length (lb/ft)	129.7	136.6	143.5	150.4	157.3	164.2	171.1	178.0	184.9	191.8	198.6	205.5	212.4
A (in ²)	467	492	517	541	566	591	616	641	665	690	715	740	765
Sx (in ³)	2,019	2,239	2,471	2,714	2,969	3,233	3,511	3,800	4,100	4,412	4,733	5,068	5,414
lx (in ⁴)	26,182	30,587	35,460	40,825	46,705	53,077	60,055	67,620	75,795	84,603	93,998	104,140	114,986
EI (×10 ⁶ lbf-in2)	47,127	55,056	63,828	73,485	84,070	95,538	108,099	121,716	136,431	152,286	169,197	187,452	206,975
Mr (lbf-ft)	353,737	390,347	428,660	468,668	510,363	553,417	598,451	645,150	693,508	743,519	794,795	848,081	903,001
Vr (lbf)	93,384	98,352	103,320	108,288	113,256	118,188	123,156	128,124	133,092	138,060	142,992	147,960	152,928

NOTES:

1. 24F-V8 SP glulam.

2. Uniformly distributed loading.

3. Depths are based on 35 mm 6 mm lamination thickness minus 6mm planing depth.

4. Beam properties calculated based on architectural depths and architectural beam widths.

5. Beam weight is based on density of 40lbf/ft³

6. Beam span for Cv calculations (NDS 5.3.6) assumed to be 18x actual depth and x=20

7. Beam engineering properties are calculated in accordance with NDS.

8. The tabulated shear capacity Vr shall be reduced by Cvr=0.72 for repetitive/impact loads, design of members at notches and design of members at connections, as per NDS 5.3.10

9. These tables do not account for charring fire protection. Fire protection should be provided by encapsulation with a fire rating material as required by the applicable Building Code. Alternatively, NDS Annex B can be used to calculate effective charring to provide fire protection.

10. Assumed modification factors:

- standard term load duration (CD = 1)

- dry service condition (CM = 1)

- no preservative treatment (CT = 1)

- continuous lateral support along compression edge (CL = 1)

MERCER MASS TIMBER CARE, RIGGING AND INSTALLATION

Mercer CLT and Glulam: Care, Rigging and Installation

PACKAGING

All Mercer CLT panels and glulam beams and columns are wrapped (individual, bundle, tarp) and protected at the factory to ensure arrival on-site in the best possible condition.

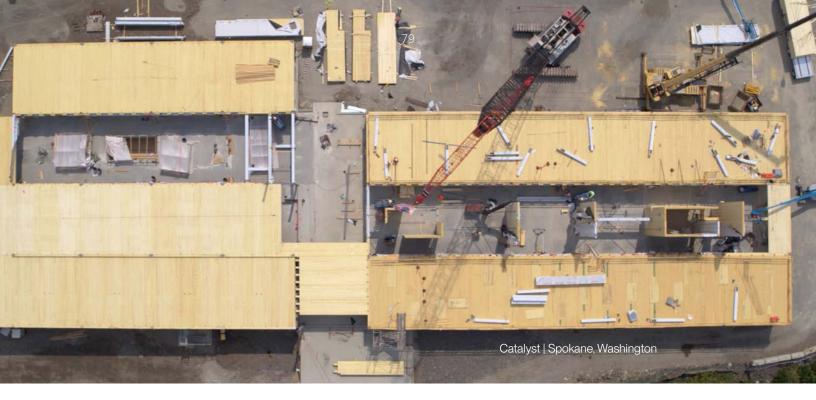
DAILY SEQUENCING

As part of our services, our project management and in-house installation teams will collaborate with the project's construction team to coordinate delivery and construction schedules. In the event temporary site storage is required, please see "Storage" for recommendations.

RIGGING & SHORING

Before installation, Mercer CLT panels and glulam beams can be prepared for safe lifting and hoisting. All lifting equipment, rigging, and hoisting devices must be designed by the installer's erection engineer. Our in-house engineers and fabrication specialists are equipped to inform and guide the project team towards a competent solution and/or provide professional engineering advice.

STORAGE


Store Mercer CLT and glulam elements on a flat surface, raised off ground contact by 6" to 12" using clean, wooden blocking spaced to ensure no product deflection. Separate courses with additional blocking, ensuring blocking is vertically aligned/stacked.

Cover product with good-quality, clean tarpaulin to protect from adverse weather conditions and UV exposure. Water will stain the product. Prolonged exposure to sunlight will cause "tanning" and will discolor the product. UV-resistant temporary sealants can be applied in the factory to minimize the impact of moisture and UV, but this does not eliminate the need for adequate storage on site.

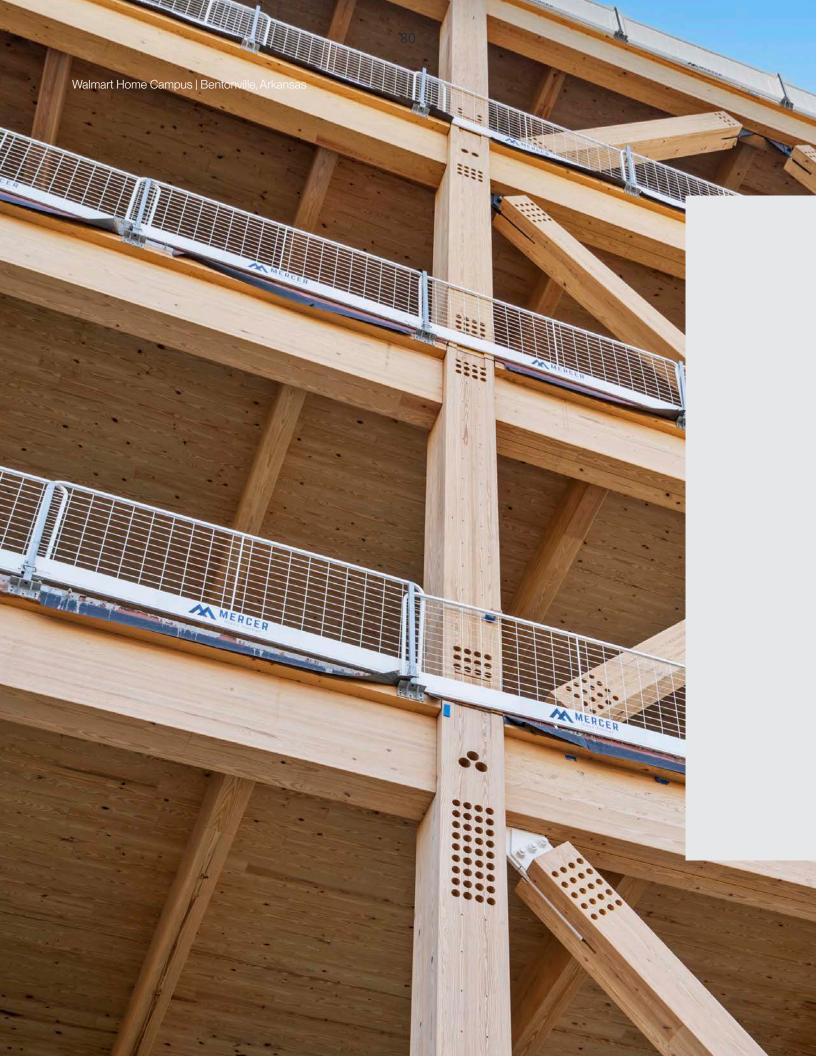
For long-term storage, cut slits in the bottom of the wrapping to allow ventilation and drainage of any entrapped moisture. MMT recommends retaining factoryapplied wrapping on product until fully installed and building is enclosed to best protect finished surfaces.

FINISHING

Wood finishes are a necessary component of preserving your products. Bare wood products highlight the natural beauty of

wood but may check, swell and change color over time.

Final finish coating of visually exposed Mercer CLT and glulam members is recommended and should be applied after the building is enclosed but prior to introducing heat in the building. Finish sanding with 80 grit sandpaper in the direction of the wood grain is recommended prior to application of finishing product to exposed surfaces. Ensure that finishes are compatible with factory applied temporary coating systems.


Follow all application directions of finishing product. Finishing a small, concealed test area to ensure satisfactory end-results is always recommended.

CONDITIONING

In order to minimize adverse checking and/ or dimensional movement in Mercer CLT and glulam members, it is critical that the product is allowed to gradually adjust to final ambient moisture and temperature conditions over a period of several weeks.

Upon building closure, adjust building temperature and relative humidity slowly, over a series of weeks, allowing mass timber components equilibrium to adjust more naturally. Remember, room temperatures near ceilings can be several degrees warmer than at floor level.

Do not expose Mercer CLT and glulam beams and columns directly to forced air during this period to avoid abrupt checking.

MERCER MASS TIMBER CONSTRUCTION SERVICES

Mercer Mass Timber Construction Services

Mercer can offer in-house construction services to ensure that the installation of our mass timber products is easy, safe and efficient. We have a team of experienced mass timber erectors with over a decade of experience in the installation of timber buildings in North America.

UNPARALLELED ADVANTAGES OF MERCER MASS TIMBER INSTALLATION SERVICES

LOGISTICS COORDINATION FOR MASS TIMBER DELIVERIES

Leveraging our vertical integration, we streamline logistics coordination for mass timber deliveries. This approach ensures efficient and timely delivery, minimizing delays and optimizing project timelines.

REDUCTION IN SCOPE GAP FOR GENERAL CONTRACTORS/OWNERS

By having control over the entire process from engineering to manufacturing and installation, we significantly reduce scope gaps, fostering a smoother project execution and minimizing discrepancies.

OFF-SITE ASSEMBLY ASSISTANCE

Our ability to perform off-site assembly, including the installation of necessary hardware at our factories, reduces on-site installation complexities. This approach ensures precision and quality while enhancing project efficiency.

INSTALLATION SEQUENCE/TRUCKING SEQUENCE TRANSPARENCY

We maintain transparent and clear installation sequences and trucking sequences, providing comprehensive visibility to stakeholders. This transparency minimizes uncertainties and enhances project planning.

VALUE ENGINEERING PROPOSITIONS

Our comprehensive understanding and collaboration among our engineering, manufacturing, and construction teams under one roof enable us to offer value engineering propositions. This results in optimized solutions that balance functionality, aesthetics, and cost-effectiveness.

TIMBER EXPERTISE

Our construction team boasts an exceptional level of expertise in mass timber construction, having overseen the successful installation of numerous mass timber structures across a diverse array of project types and geographic locations. With a track record encompassing multi-family residences, commercial establishments, residential buildings, and warehouse-industrial structures, our team has demonstrated proficiency and versatility in handling various project complexities.

We can Partner with Your Installer of Choice

We can also work closely with one of the numerous mass timber installers in the market. We will nurture a collaborative environment and seek installation sequence and detailing feedback from your installer, as well as agreeing on the delivery sequence.

SEQUENCING

Truckload sequencing is a standard feature of MMT's mass timber packages, with the exact sequence established during the shop drawing process. Wherever possible, Mercer CLT panels are arranged to be erected directly from the delivery truck to their installation point. However, to ensure safe shipment, some panels or members may be delivered out of sequence to facilitate the safe transportation of the load to the site.

Please contact MMT to learn more about truckload sequencing.

SITE ASSEMBLY DRAWINGS

Design for Manufacture and Assembly (DfMA) is at the core of what we do. Our team ensures that every component of your project can be produced, delivered, and installed with maximum efficiency. We can generate site assembly drawings from the approved 3D model to provide clear and precise instructions for the installation team, facilitating an efficient site installation.

For more information about our site assembly drawings services, please contact Mercer Mass Timber.

COMING SOON

Additional Features and Canadian Design Values

As a successor to the technical guide published by Structurlam, the Mercer Mass Timber Technical Guide will be expanded to encompass the latest product and service offerings.

At MMT, our goal is to develop the most advanced mass timber building systems in the world, making them more widely available, more efficiently produced, and of higher quality than ever before. Leveraging our comprehensive expertise in mass timber and our unprecedented investments in R&D, testing, manufacturing, design, engineering, and construction, we provide our partners with the most cutting-edge building systems available.

JOIN US IN ADVANCING MASS TIMBER, TOGETHER.

High Line Timber Bridge | New York, New York

Let's Work Together

Designed to reduce carbon emissions while offering unparalleled strength and versatility, our products stand at the intersection of innovation and sustainability.

Discover how your projects can benefit from our cutting-edge technology and quality mass timber products.

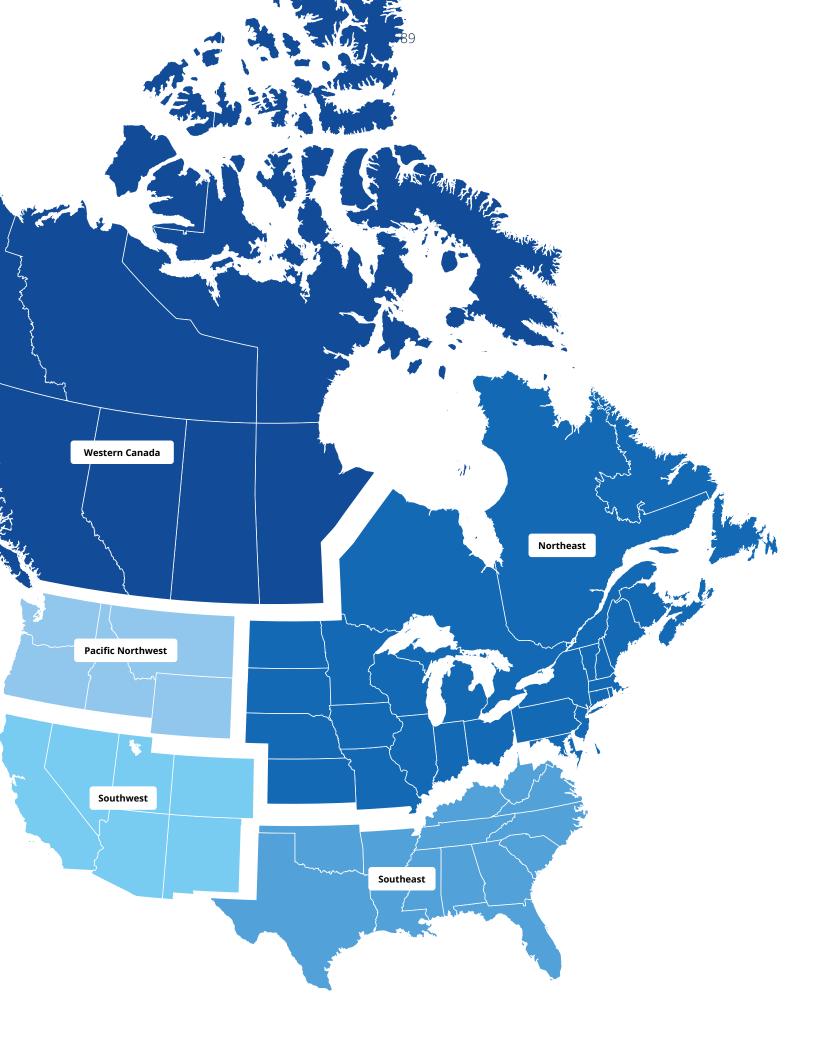
Reach out to our sales team and start building a greener tomorrow.

MMT Sales and Business Development

With our extensive coverage across North America, our sales team is ready to support you in creating sustainable and innovative structures with our mass timber solutions.

John Kostaras Director of Sales e: john.kostaras@mercerint.com

Stephanie Kullman Regional Manager, Western Canada e: stephanie.kullman@mercerint.com


Ryan Edwards Regional Manager, Pacific Northwest e: ryan.edwards@mercerint.com

Aschley Yanda Regional Manager, Southwest e: aschley.yanda@mercerint.com

Calum Dodson Regional Manager, Northeast & Southeast e: calum.dodson@mercerint.com

Mercer Mass Timber

MMT PROJECT SERVICES

700 West Pender Street, Suite 1120 Vancouver, BC, V6C 1G8 Canada

MMT CONSTRUCTION SERVICES

19202 Garland Avenue Spokane Valley, WA 99027 United States

MMT MANUFACTURING

MERCER CONWAY

1800 Sturgis Road Conway, AR 72034 United States

MERCER SPOKANE

19202 Garland Avenue Spokane Valley, WA 99027 United States

MERCER OKANAGAN

1716 Wallis Road Okanagan Falls, BC V0H 1R2 Canada

clt@mercerint.com mercermasstimber.com

Mercer Mass Timber (MMT) is a wholly-owned subsidiary of Mercer International, a global provider of renewable materials and energy.

